Introducción a Stata Ventajas de utilizar STATA

Stata es un paquete estadístico desarrollado y distribuido por Stata-Corporation. Es un paquete que cuenta con varias ventajas que podrían resumirse en lo siguiente:

- ✓ Contiene muchas de las técnicas estadísticas mas recientes.
- ✓ Se actualiza frecuentemente.
- Métodos gráficos muy poderosos.
- ✓ Buena interfase con procesadores de texto e impresoras.
- ✓ Requiere de poco espacio en el disco duro.
- ✓ Requiere de poca memoria. Precio accesible.
- ✓ Lenguaje de programación amigable y sencillo.

Aunque Stata también tiene ciertas desventajas : No puede leer directamente de manejadores de bases de datos, para esto necesita de un programa de interfase:

DBMSCOPY o

Stattransfer

El DBMSCOPY y el Stattransfer son programas de traducción de archivos, de todo a todo, DBASE a Foxpro SPSS a STATA, de STATA a SAS, de SAS a Epi Info, etc.

Para iniciar con Stata

Stata se ejecuta pulsando doblemente el icono de Stata en el menú de Start en Windows. Al ejecutar Stata aparecerá la siguiente pantalla:

Las barra de herramientas de Stata

Ventana de variables

(instrucciones a realizar)

Stata para Windows tiene trece botones. Si se le olvida lo que hace cualquier botón, ponga el puntero del ratón sobre el icono y en unos segundos aparecerá la descripción en inglés.

La lista de botones son los siguientes:

1) Open (Abrir)

Abre una base de datos de Stata.

2)Save (Guardar)

Guarda en el disco la base de datos actualmente en memoria.

3) Print Graph/Print Log (Imprimir gráficas/Imprimir el registro)

Imprime una gráfica o el archivo de registro (log)

4) Log open/Stop/Suspend (Abrir/cerrar/ o suspender un archivo de registro) (Log in Windows)

Abre un archivo de registro nuevo o añade a otro.

Cierra o suspende provisionalmente el registro.

5) Start View to Front (Coloca la ventana de registro al frente)

Coloca la ventana de registro sobre la ventana de Stata.

6) Bring Results to Front

Coloca la ventana de resultados al frente

7) Bring Graph to Front (Coloca la ventana de gráficas al frente)

Coloca la ventana de gráficas al frente de las otras ventanas de Stata

8) Do-file Editor (Editor de archivos-do)

Abre el editor de archivos-do, lo coloca al frente de las otras ventanas de Stata

9) Data Editor (Editor de datos)

Abre el editor de datos o lo coloca al frente de las otras ventanas de Stata

10) Data Browser (Visualizador o hojeador de datos)

Abre el visualizador de datos o lo coloca al frente de las otras ventanas de Stata

11) Clear -more- Condition (continuar)

Le instruye a Stata que continúe después de parar durante una producción larga

60)

12) Break (interrumpir) Interrumpe lo que esté haciendo Stata.

Stata versión 7 tiene la opción de activar un submenú llamado **quest** el cual se proprociona en la página web de Stata.

🛤 Intercooled Stata 7.0	
File Edit Prefs Data Graphs Summaries Statistics Calculator Help	
F F S S E E E S S E E E E S S E E E E E S E E E E S S S S S S S S S S	

Con el *quest* se pueden ejecutar algunas órdenes desde los menún a través de uso de ventanas como algunos gráficos, estadísticas de resumen, modelos estadísticos simples y empleo de calculadora.

La nueva versión de stata (Stata 8) trae activada esta opción automáticamente y proprociona además el acceso directo desde el menú a opciones que stata 7 no contiene como por ejemplo Data, Graphics Statistics y el User, lo cuales permiten realizar a travéz de ventanas muchas de las órdenes que se hacen vía programación en la ventana de comandos.

	nterc	ooled	Stata	a 8.2	
File	Edit	Prefs	Data	a Graphics Statistics User Window Help	
		9	\$:	: 👁 🧱 📕 🧐 🛄 🔯 💿 😣	

Casi todas las órdenes de Stata se han implementado como diálogos y se pueden obtener por medio de menús que se han organizado por temas. Sólo elija una orden de los menús de **Statistics**, **Graphics** o **Data**, complete el diálogo y la orden se emitirá a Stata. Con estos nuevos menús y diálogos de Stata.

Ejemplo:

La orden para ordenar los datos de menor a myor en base a una columna o varaible es *sort,* si quiero aplicar la orden desde ventanas entonces con el cursos selecciono el menú **Data** en el cual aparecerá una lista de opciones. Con el mismo cursor navego hasta la opción Sort y selección la orden deseada: sort data

Una vez seleccionada la orden aparecerá una ventana de diálogo en la cual solo tengo que agregar el nombre de la varaible por la cual deseo ordenar mis datos.

🖬 sort - Sort data		
Variables:		
era		~
Perform stable sort (equa	al items keep relative order)	
─ Restrict sort of observation	ins	
🗌 from: 1 🤤	to: 0 🗢	
00	OK Cancel	Submit

y eligo OK si deseo concluir la orden o submit si deseo realizar la orden pero contunuar con la misma ventana de diálogo. En la ventana de resultados aparecerá lo siguiente: **sort era** con lo cual se muestra que la orden se ejecutó.

Si es necesaro se pueden elegir las opciones que cada orden puede contener, por ejemplo si deseo puede dar click con el ratón en la opción *from* dentro de las opciones para restringir a un numero de observaciones y elegir de que a que observación deso ordenar:

	🗖 sort - Sort data 🛛 🔀	3
	Variables:	
	era 💌	
	Perform stable sort (equal items keep relative order)	
/	Hestrict sort of observations	
ĺ		
	OK Cancel Submit)

En la ventana de resultados aparecerá:

. sort era in 1/20

y los datos se ordenarán de menor a mayor por la variable era solo en los registros del 1 al 20.

Lista de los Menús de Data y Stathistics contenidos en STATA 8.

Data: Contiene instrucciónes útiles para el manejo de bases de datos desde STATA.

Data:

- I. Describe data
 - 1) Describe variables in memory
 - 2) Describe variables in file
 - 3) Describe data contents (codebook)
 - 4) Inspect variables
 - 5) List data
 - 6) Compactly list variable names
 - 7) Summary statistics
- II. Data editor
- III. Data browser (red-only editor)
- IV. Create or change variables
 - 1) Create new variable
 - 2) Create new variable (extend)
 - 3) Other variable creation commands
 - Interaction expansion
 - Create indicator variables
 - Fill in missing values
 - Linearly interpolate/extrapolate values
 - Draw samples from normal distribution
 - Create dataset with specified correlation
 - Orthogonalize variables
 - Orthogonal polynomials
 - Create fractional polynomial powers
 - Linear spline construction
 - Zero-skewness log transform
 - Box-Cox transform
 - Generate numerical ranges
 - Calculate numeric derivatives
 - Calculate numeric integrals
 - 4) Change contents of variable
 - 5) Other variable transformation commands

- V. Sort
- 1) Sort data
- 2) Ascending/descending sort
- VI. Combine datasets
 - 1) Merge datasets
 - 2) Form all pairwise combinations within groups
 - 3) Append datasets
 - 4) Form every pairwise combination of two datasets
- VII. Labels & notes
 - 1) Label dataset
 - 2) Label variable
 - 3) Define value label
 - 4) Assign value label to variable
 - 5) Set or change language for labels
 - 6) List value labels
 - 7) Drop value labels
 - 8) Save value labels as do-file
 - 9) Produce codebook describing value labels
 - 10) Add/remove numeric values from values labels
 - 11) Make dataset from value labels
 - 12) Add notes to data
 - 13) List notes
 - 14) Delete notes

VIII. Variable utilities

- 1) Rename variable
- 2) Set variable display format
- 3) Eliminate variables or observations
- 4) Change order of variables in dataset
- 5) Alphabetize variables
- 6) Relocate variable
- 7) Compare two variables
- 8) Compare two datasets
- 9) Optimize variable storage
- 10) Check for unique identifiers
- 11) Check for duplicate observations
- 12) Count observations satisfying condition
- IX. Matrices
 - 1) Input matrix by hand
 - 2) Define matrix from expression
 - 3) Convert variables to matrix
 - 4) Convert matrix to variables

- 5) List contents of matrix
- 6) Rename matrix
- 7) Drop matrices
- 8) Eigenvalues & vectors of symmetric matrices
- 9) Singular value decomposition
- 10) Eigenvalues of square matrices
- X. Other utilities
 - 1) Hand Calculator
 - 2) ICD-9 utilities
 - Verifiy variable is valid
 - Clean and verify variable
 - Generate new variable frop existing
 - Display code descriptions
 - Search for codes from descriptions
 - Display ICD-9 code surce

Graphs

- I. asy graphs
 - 1) Scatter plot
 - 2) Connected scatter plot
 - 3) Line graph
 - 4) Area graph
 - 5) Overlaid twoway graphs
 - 6) Bar chart
 - 7) Horizontal bar carth Dot chart
 - 8) Pie chart (by variables)
 - 9) Pie chart (by category)
 - 10) Histrogram
 - 11) Box plot
 - 12) Horizontal box plot
 - 13) Scatterplot matrix
 - 14) Regression fit
 - 15) Function graph
- II. Twoway graph (scatterplot, line, etc.)
- III. Overllaid twoway graphs
- IV. Bar chart
- V. Pie chart
- VI. Histogram
- VII. Box plot

- VIII. Horizontal box plot
- IX. Scatterplot matrix
- X. Distributional graphs
 - 1) Symetry plot
 - 2) Quantiles plot
 - 3) Normal quantile plot
 - 4) Normal probability plot
 - 5) Chi-squared quantile plot
 - 6) Chi-squared probability plot
 - 7) Quantile-quantile plot
 - 8) Ladder of powers histograms
 - 9) Ladder of powers normal quantiles plots
 - 10) Spike plot and rootogram
- XI. Smoothing and densities
 - 1) Kernel density estimation
 - 2) Lowess smoothing
- XII. Regression diagnostics plots
 - 1) Added-variable
 - 2) Component-plus-residual
 - 3) Augmented component-plus-residual
 - 4) Leverage-versus-squared residual
 - 5) Residual-versus -fitted
 - 6) Residual-versus-predictor
- XIII. Cross-sectional time-series line plots
- XIV. Survival analysis graphs
 - 1) Line plots
 - 2) Correlogram(ac)
 - 3) Partial correlogram (pac)
 - 4) Periodogram
 - 5) Cumulative spectral distribution
 - 6) Bivariate cross-correlogram
 - 7) Barlett's white noise test
 - 8) Vector autoregression (VAR) graphs
- XV. ROC analysis
 - 1) Nonparametric ROC curve
 - 2) Parametric ROC curve after rocfit
 - 3) Compare ROC Curves
 - 4) Compare ROC curves against a gold standard
 - 5) ROC curve after logistic/logit/probit
 - 6) Sensitivity/specificity plot
- XVI. Quality control

- 1) Cumulative sum(cusum)
- 2) C chart
- 3) P chart
- 4) R chart
- 5) X-bar chart
- 6) Vertically aligned X-bar and R chart
- 7) Standar error bar chart
- XVII. More statistical graphs
 - 1) Dendograms for hierartchical cluster analysis
 - 2) Eigenvalues after factor analysis
 - 3) Fractional polynomial regression plot
 - 4) Odds of failure by category
 - 5) Pharmacokinetic measures
 - 6) Pharmacokinetic data summary
 - 7) Means/medians by group
 - 8) Comparative scatterplot
- XVIII. Table of graphs
- XIX. Manage graphs
 - 1) Rename graph in memory
 - 2) Copy graph in memory
 - 3) Drop graphs
 - 4) Describe graph
 - 5) Make memory graph current
 - 6) Query styles and schemes
- XX. Change scheme/size
- XXI. Graph preferencies

Statistics: Contiene las ordenes y funciones necesarias para análisis de cualquier nivel.

Statistics:

- I. Summaries, tables & tests
 - 3) Summary statistics
 - Summary statistics
 - Confidence intervals
 - Normal CI calculator
 - Binomial CI calculator
 - Poisson CI calculator
 - Correlations & covariances

- Pairwise correlations
- Partial correlations
- Arith./geometric/harmonic means
- Graph means/medians by groups
- Centiles with Cls
- Create varaible of percentiles
- Create variables of quartiles
- 4) Tables
 - Table of summary statistics (table)
 - Table of summary statistics (tabstat)
 - One/two-way tables
 - Mulple one-way tables
 - Two-way tables with measures of association
 - All possible two-way tabulations
 - Tabel calculator
- 5) Classical tests of hypotheses
 - One-sample mean comparison test
 - Two-sample mean comparison test
 - One -sample mean comparison calculator
 - Two-sample mean comaprison calculator
 - Binomial probability test
 - Binomial probability test calculator
 - One-sample proportion test
 - Two-sample proportion test
 - Group proportion test
 - One-sample proportions calculator
 - Two-sample proportions calculator
 - One-sample variance camparison test
 - Two-sample variance camparison test
 - Group variance camparison test
 - One-sample variance camparison calculator
 - Two-sample variance camparison calculator
 - Robust equal variance test
 - Sample size & power determination
- 6) Nonparametric test of hypotheses
 - One sample Kolmogorov-Simirrov test
 - Two sample Kolmogorov-Simirrov test
 - Kruscal-Wallis rank test
 - Wicoxon matched-pairs signed-rank test
 - Test equality of matched pairs
 - Mann-Whitney two-sample ranksum test

- k-sample equality of medians test
- Test for random order
- Trend test across order groups
- Spearman's rank correlation
- Kendall's rank correlation
- 7) Distributional plots & tests
 - Symetry plot
 - Quantiles plot
 - Normal quartile plot
 - Chi-squared quantile plot
 - Quantile-quantile plot
 - Stem & leaf display
 - Letter-value display
 - Cumulative distribution graph
 - Skewness & Kurtosis normality test
 - Shapiro-Wilk normality test
 - Shapiro-Francia normality test
 - Ladder of powers
 - Ladder of powers histograms
 - Ladder of powers normal quantile plots
- II. Linear regression and related
 - 1) Lineal regression
 - 2) Regression diagnostics
 - Added variable plot
 - Component-plus-residual plot
 - Augmented component-plus-residual plus
 - Levarege-versus-squared residual plot
 - Residual versus-fitted plot
 - Residual versus-predictor plot
 - Ramsey RESET omitted varaible test
 - Score test for heteroskedaticity
 - DFBETAs
 - Variance inflation factors
 - Informations matrix test
 - Szroeter´s rank test for homoskedasticity
 - 1) Box Cox regression
 - 2) Errors-in-variables regression
 - 3) Frontier models
 - 4) Truncated regression
 - 5) Constrained linear regression
 - 6) Multiple equations model

- Instrumental varaibles & two stage least square
- Tree stage estimation
- Seemingly unrelated regression
- 7) Censored regression
 - Tobit regression
 - Censored normal regression
 - Interval regression
- 8) Fractional polynomial
 - Fractional polynimial regression
 - Multivariate fractional polynomial models
 - Fractional polynomial regression plots
 - Create fractional polynomial powers
- 9) Others
 - Variance-weighted least square
 - Robust regression
 - Nonlinear least square
 - Linear regression absrobing one cat. Variable
- III. Binary outcomes
 - 1) Logistic regression

- 2) Logistic regression reporting odds ratio
- 3) Probit regression
- 4) Probit regression (reporting change in probability)
- 5) Bivariate probit regression
- 6) Seemingly unrealted bivariate probit regression
- 7) GLM for the binomial family
- 8) Complementary log-log regression
- 9) Heteroskedastic probit regression
- 10) Skewedd logit regression
 - Grouped data
 - Logit regression for grouped data
 - Probit regression for grouped data
 - Weighted least-squares logyt regression
 - Weighted least-squares probit regression
- 11) Post-estimations
 - Goodness-of-fit for logistic/logyt/probit
 - Summary statisctics after logistic/logyt/probit
 - ROC curva after logistic/logyt/probit
 - Sensitivity/specificity plot
- IV. Ordinal outcomes
 - 1) Ordered logyt regression
 - 2) Ordered probit regression

- V. Count outcomes
 - 1) Poisson regression
 - 2) Goodness-of-fit after poisson regression
 - 3) Negative binomial regression
 - 4) Generalized negative binomial regression
 - 5) Zero-inflated poisson regression
 - 6) Zero-inflated negative regression
- VI. Categorical outcomes
 - 7) Multinomail logistic regression
 - 8) Conditional logistic regression
 - 9) Nested logit regression
 - 10) Setup for nested logit regression
 - 11) Display nested logyt tree structure
 - 12) Rank-ordered logistic regression
- VII. Selection models
 - 1) Heckman selection model(ML)
 - 2) Heckman selection model(two-step)
 - 3) Probit estimation with selection
 - 4) Tratment effects model (ML)
 - 5) Tratment effects model(two-step)
- VIII. Generalized linear models (GLM)
 - Generalized linear models(glm)
- IX. Nonparametric analysis
 - 1) Kernel density estimation
 - 2) Lowess smoothing
 - 3) Robust nonlinear smoother
 - 4) Quantile regression
 - 5) Interquantile regression
 - 6) Simultaneous-quantile regression
 - 7) Bootstrapped quantile regression
- X. Time series
 - 1) Setup & utilities
 - Declarate dataset to be time series data
 - Fill in missing time values
 - Report time-series aspects of dataset
 - Append obs to time-series dataset
 - 2) ARIMA models
 - 3) ARCH/GARCH
 - ARCH & GARCH models
 - Nelson EGARCH model
 - Threshold ARCH model

- GJR form of threshold ARCH model
- Simple asymmetric ARCH model
- Power ARCH model
- Nonlinear ARCH model
- Nonlinear ARCH model a single shift
- Asymmetric power ARCH model
- Nonlinear power ARCH modelx
- 4) Prais-Winsten regression
- 5) Regression with newey-West std. errors
- 6) Smoother/univariate forecasters
 - Single exponencial smoothig
 - Double exponencial smoothing
 - Holt-winters nonseasonal smoothing
 - Holt-winters seasonal smoothing
 - Nonlinear filter
 - Moving average filter
- 7) Tests
 - Augmented Dickey-Fuller unit-root test
 - Perform DF-GLS test for a unit root
 - Phillips-perron units roots test
 - Barlett´s periodogram-based white noise test
 - Portmanteau with noise test
 - Breusch-Godfrey LM test after regress
 - LM test for ARCH after regress
 - Durbin-Watson d statistic after regress
 - Durbin's alternative test after regress
- 8) Graphs
 - Line plots
 - Autocorrelations & partial autocorrealations
 - Correlogram (ac)
 - Partial correlogram(pac)
 - Periodogram
 - Cumulative spectral distribution
 - Cross-correlogram for bivaraite time series
- XI. Multivariate time series
 - 1) Setup & utilities
 - Declarate dataset to be time series data
 - Fill in missing time values
 - Report time-series aspects of dataset
 - Append obs to time-series dataset

- 2) Basic vector autorregresive model
- 3) Vector autorregresive model (VAR)
- 4) Structural vector autorregresive model
- 5) VAR diagnostics and test
 - Granger causality tests
 - LM statistics for residual aucorrelation
 - Test for normally distributed disturbances
 - Lag-order selection statisticsx
 - Check VAR stability condition
 - Wald lag exclusion statistics
- 6) VAR dinamics forecasts
 - Compute forecasts (required for graph)
 - Graph forecasts
- 7) IRF & variance decomposition analysis
 - Create IRF result set
 - Impulse-response functions graphs
 - Overlaid graph
 - Impulse-response function talbes
 - Combined tables
- 8) Manage IRF results and files
 - Add an IRF results set
 - Rename IRF result set
 - Drop IRF result set(s)
 - Describe an IRF file
 - Erase an IRF file
 - Set active IRF file
- XII. Cross-sectional time series
 - 1) Setup & utilities
 - 2) Linear models
 - 3) Endogenous covariates
 - 4) Dynamic panel data
 - 5) Contemporaneos correlations
 - 6) Random coefficientes
 - 7) Frontier models
 - 8) Binary outcomes
 - 9) Count outcomes
 - 10) Censored outcomes
 - 11) Generalized estimating ecuations (GEE)
 - 12) Line plots
- XIII. Survival anaysis

- 1) Setup & utilities
- 2) Summary statistics, tests & tables
- 3) Regression models
- XIV. Observational/Epi. Analysis
 - 1) ROC analysis
 - 2) Tables of epidemiologists
 - 3) Other
- XV. Survey data analysis
 - 1) Setup & utilities
 - 2) Distribution-specific models
 - 3) Univariate estimator
- XVI. ANOVA/MANOVA
 - 1) Analysis of variance & covariance
 - 2) Test linear hypotheses after anova
 - 3) One-way analysis of variance
 - 4) Large one-way ANOVA, random effects, and reliability
 - 5) MANOVA
 - 6) Multivaraite test after MANOVA
 - 7) Wald test after MANOVA
 - 8) Hotelling 's T-squared generalized means test
- XVII. Cluster analysis
 - 1) Kmeans cluster analysis
 - 2) Kmedians cluster analysis
 - 3) Single linkage clustering
 - 4) Average linkage clustering
 - 5) Complete linkage clustering
 - 6) Weighted average linkage clustering
 - 7) Median linkage culstering
 - 8) Centroid linkage clustering
 - 9) Wards linkage clustering
 - 10) Post-clustering
 - Dendograms for hierachical cluster analysis
 - Cluster analysis stopping rules
 - Generate summary variables from cluster analysis
 - Cluster analysis notes
 - Detailed listing of cluster
 - Drop cluster analysis
 - Rename a cluster or cluster variables
- XVIII. Other multivariate analysis
 - 1) Multivariate regression
 - 2) Factor analysis

•

- 3) Principal component analysis
- 4) Rotation of factor analysis
- 5) Scoring after principal component analysis
- 6) Scoring after factor analysis
- 7) Graph of eigenvalues after factor analysis
- 8) Cronbash's alfa
- 9) Canonical correlations

XIX. Resampling & simulation

- 1) Bootstrap estimation
- 2) Bootstrap statistical from variables
- 3) Bootstrap statistical from file
- 4) Jackknife estimation
- 5) Montecarlo permutation test
- 6) Bootstrap sampling
- 7) Draw random sample
- 8) Draw a sample from a normal distribution
- 9) Create a dataset with a specified correlation structure
- XX. General post-estimation
 - 1) Obtain predictions, residuals, etc, after estimation
 - 2) Nonlinear predictions after estimation
 - 3) Tables of adjusted means & proportions
 - 4) Tests
 - 5) Linear combinations of estimators
 - 6) Nonlinear combinations of estimators
 - 7) Obtain marginal effects or elaticities after estimation
 - 8) Replay marginal effects
 - 9) Manage estimation results
 - 10) Display variance-covariance matrix of estimators
- XXI. Other
 - 1) Collect statistics for a command across a by list
 - 2) Stpwise estimation
 - 3) Constrains
 - 4) Quality control

Ayuda

Stata para Windows tiene un sistema de ayuda integrada. El sistema Help.

El help cuenta con las siguientes características para la utilización del mismo y del programa STATA.

Puede mantener la ventana de ayuda abierta mientras entra órdenes o instrucciones. Al seleccionar ayuda **Help** usando la barra principal, podrá hacer una de las siguientes cosas:

•Ver el contenido de ayuda (table of contents)

• Buscar información sobre algún tema y obtener ayuda sobre alguna orden de Stata

• Listar las últimas adiciones a Stata, Además instalar la última versión oficial de Stata contenida en un disco flexible (o bajándola de la web si usa Stata para Windows 98/95/NT), programas de Stata escritos por otros usuarios o del boletín técnico (Stata Technical *Bulletin).*

Al seleccionar **(Search ...) usando** el menú de **Help** puede buscar información usando palabras claves y producir una pantalla que contiene:

• Enlaces de hipertexto (palabras pulsables de color claro) las cuales lo conectan con los archivos de ayuda correspondientes.

•Referencias a temas en los manuales de referencia y de gráficas (Reference Manual y Graphics Manual), a la guía del usuario (User's Guide) y al boletín técnico (Stata Technical B*ulletin.)*

•FAQs preguntas frecuentemente hechas sobre el tema en el sitio-web de Stata.

Ejemplo:

• Usando el menú de Help, seleccione Search...

• escriba regression y oprima OK

Verá todas las referencias sobre el tema **regression** en el manual de referencia y la guía del usuario. También verá una lista de todas las órdenes de Stata que tengan algo que ver con **regression**.

•Otras órdenes de Stata como **qreg**, **cnreg**, **y cnsreg** aparecerán en verde al colocar el puntero del ratón cerca del enlace de hipertexto, el puntero se cambiará a una mano. Si pulsa mientras la mano está sobre una de las órdenes, por ejemplo **qreg**, irá al archivo de ayuda para **qreg**.

Se pueden buscar temas múltiples usando el **Search** Al añadir temas se reduce los resultados de la búsqueda; por ejemplo:

•Entre regression residuals

Usando el menú Help, al seleccionar Contents obtendrá el contenido del sistema de ayuda.

- Puede seleccionar uno de los enlaces para obtener ayuda sobre la orden
- •ó puede entrar el nombre completo de la orden en la ventana.

Ejemplo:

- 1) Pulse en la ventana Help
- 2) Entre ttest (ttest es una orden de Stata). Al oprimir Enter irá al archivo de ayuda para ttest
- 3) Oprima Back para regresar al archivo anterior
- 4) Oprima Top para regresar al contenido o a los resultados del Search

Stata cuenta con manuales para su uso, el help es solo una parte específica de los que se desea saber de Stata, es por eso que cuando en un texto en el help aparece la expresión "[R] se refiere a la anotación para la orden de interés en el manual de referencia. [R] es de referencia y la expresión "[G] **graph options**", se refiere a la anotación para **graph options** en el manual de gráficas. [G] es de gráficas.

Las órdenes de ayuda y búsqueda

- Se puede entrar al sistema de ayuda desde la *ventana de* órdenes.
 Al hacer esto, los resultados aparecen en la ventana de resultados o en la ventana de ayuda.
- 2. Teclear *search tema* en la ventana de órdenes es igual que seleccionar **Search**... después de seleccionar Help de la barra principal y poner el *tema de interés*. Sin embargo, los resultados aparecen en la ventana de resultados.
- Teclear help nombre de la ordenes igual que seleccionar de la barra principal Help, después Stata command..., y entrar nombrede la orden, pero los resultados no aparecerán en la ventana de resultados.

4. Diferencia importante:

Con las órdenes help y search, no tendrá enlaces de hipertexto en la ventana de resultados.

5. Se puede obtener ayuda con enlaces de hipertexto en la ventana de órdenes.

En lugar de teclear *help nombre de la orden*, teclee w*help nombre de la orden*. El archivo de ayuda aparecerá en la ventana de ayuda y podrá usar los enlaces de hipertexto. (Teclar *whelp nombre de la orden* es igual que usar la barra principal, seleccionar **Help Stata command...**, y teclear *nombre de la orden*.)

El editor de datos

Para ejecutar el editor de datos:

- Se oprime el botón Data Editor
- ó se teclea edit en la ventana de órdenes y se oprime Enter L

El editor de datos funciona como una hoja de cálculo, cada columna es una variable y cada fila una observación. Dentro del editor puede navegar pulsando la celda deseada o usando las flechas del teclado y también puede copiar datos de otras hojas de cálculo al editor de Stata y viceversa:

- En el editor de Stata o en la otra hoja de cálculo resalte los datos que desea copiar. Seleccione Edit y después Copy.
- 2) Ahora hay que pegar los datos en el editor de Stata o en la otra hoja de cálculo. Esto se hace seleccionando la celda superior en el lado izquierdo del área donde desea copiar los datos.
- 3) Seleccione Edit y después Paste

Para modificar o añadir datos

1) Se selecciona la celda, se teclea el valor y se oprime Enter o Tab

Nota: La diferencia entre Enter y Tab es que:

- Enter lo mueve de fila en fila en la misma columna y
- *Tab lo* mueve de columna a columna en la misma fila hasta al final y después a la primera columna de la próxima fila.

Para añadir variables:

- 1) Se pulsa en la primera celda de la primera columna vacía
- 2) Se teclea el valor
- 3) Se oprime Enter para bajar a la próxima celda

Para añadir observaciones:

- 1) Se pulsa en la primera celda de la primera fila vacía
- 2) Se teclea el valor
- 3) Se oprime Enter para moverse hacia abajo
- 4) Después de terminar con la primera observación, se pulsa en la primera celda de la segunda fila
- 5) Se teclean los valores de la segunda observación y se oprime Tab para moverse a la derecha
- 6) Al terminar de entrar cada observación, *Tab* automáticamente lo llevará a la primera columna de la próxima fila.

Datos numéricos y alfanuméricos

(Datos compuestos de letras y números) se añaden de la misma manera.

• No necesita usar comillas alrededor de valores alfanuméricos

Valores numéricos que faltan (nulos) son simbolizados con un punto '.' y se añaden oprimiendo Enter o *Tab* 0 tecleando '.' y oprimiendo Enter o *Tab*

Valores alfanuméricos nulos se dejan simplemente vacíos y se añaden oprimiendo Enter o Tab

El editor: nombra las variables var1, var2,

Para cambiar el nombre de una variable:

- 1) Se pulsa doblemente en cualquier lugar en la columna de la variable de interés. Esto abre la ventana de la variable (Variable Information:)
- 2) Teclee el nombre nuevo de la variable en la línea que dice Name

El nombre debe tener de 1 a 8 caracteres. Aunque en STATA ver. 7 y Stata versión 8 pueden ocupar más de 8 caracteres. Una recomendación es utilizar nombres cortos para que puedan ser compatibles con otros programas como Epi-Ino y SPlus.

- Los caracteres pueden ser letras: A Z, a z, números: 0 9 ó el "-"
- No se pueden usar espacios u otros caracteres Ejemplo: Mi-nombre. El primer carácter debe ser una letra o el "-", pero no se recomienda empezar el nombre con el "-"

Los botones del editor de datos

El editor de datos tiene siete botones:

Preserve (preservar). Se oprime este botón si está satisfecho con los cambios que ha hecho y desea permanecer en el editor para hacer más cambios, puede actualizar el archivo de seguridad antes de seguir.

Restore (restaurar). Al abrir el editor, Stata automáticamente hace una copia de seguridad del archivo de datos.

Si desea cancelar los cambios que haya hecho antes de salir del editor y restaurar la copia de seguridad oprima este botón.

Sort (ordenar, clasificar). **Sort** pone las observaciones en orden ascendente según los valores de la variable resaltada.

<< El botón << mueve la variable resaltada a la primera columna.</p>

>> El botón >> mueve la variable resaltada a la última columna.

Hide (esconder). Hide esconde la variable resaltada. La variable existe pero el editor no la sigue mostrando.

Delete... (Borrar) Delete... abre otra ventana que le deja: borrar la variable resaltada, borrar la observación resaltada o borrar todas las observaciones en la base de datos que tengan el mismo valor que la variable resaltada.

Todas las órdenes dadas en el editor se registran en la ventana de resultados. Las órdenes son idénticas a las órdenes que se usan en Stata. El guión al frente de la orden indica que el cambio fue hecho en el editor de datos.

Creando una base de datos con el editor

Nota para personas con experiencia usando Stata: El editor de datos hace todo lo que hace la orden **input** y mucho más.

Ilustramos el uso del editor de datos usando los siguientes datos de mortalidad por neumonía e influenza:

		Numero	Tasa de	
Pais	Año	de casos	mortalidad	Porcentaje
Argentina	1994	560	83.11	3.78
Belice	1989	5	113.38	4.63
Brasil	1993	5534	152	12.64
Canadá	1992	26	6.52	1.07
Chile	1994	368	127.72	10.7
Colombia	1991	1367	152.68	10.64
Cuba	1995	87	59.23	6.29
Estados Unidos	1991	607	14.77	1.65
Guatemala	1993	4206	1439.14	33.42
México	1994	7687	264.7	15.42
Perú	1992	3275	525.77	23.2
Puerto Rico	1992	20	29.5	2.4
Venezuela	1993	875	166.86	7

Ref. Infecciones Respiratorias en niños, Yehuda Benguigui. OPS/OMS. 1997. pag27

Las variables son: País, año de última información, total de casos de muerte por neumonía e influenza, tasa de mortalidad por 100,000 nacidos vivos y porcentaje sobre el total de muertes.

¿Como se genera en stata?

Ahora vamos a crear una base de datos usando el editor de Stata.

1. Ejecute el editor.

Oprima el botón Data Editor ó teclee edit en la ventana de órdenes.

Usted verá la ventana siguiente:

Intercooled Stata 7.0							
State Editor							
Preserve Restore Sort <<	>> <u>H</u> ide <u>D</u> elete				1		
					I		

2. Introducir los datos.

Los datos se pueden añadir una variable a la vez o una observación a la vez. Las columnas corresponden a las variables y las filas a las observaciones.

3. Para añadir una nueva observación, oprima Tab después de teclear cada valor.

Empezando en la primera celda de la primera fila, teclee el país Argentina y oprima Tab para moverse a la próxima celda a la derecha. No oprima Enter porque eso lo baja a la siguiente observación.

Ahora entre el año 1994 y oprima Tab. Siga así hasta entrar todos los valores de la primera observación. Ahora pulse la segunda celda en la primera columna y entre los datos de la segunda observación siempre usando la tecla Tab.

🗖 Stata Editor								
<u>P</u> reserve	<u>R</u> estore <u>S</u> ort <	< >>	<u>H</u> ide <u>D</u> e	slete				
	var8[17] =							
	var1	var2	var3	var4	var5			
1	Argentina	1994	560	83.11	3.78			
							-	
						Þ	///	

- 4. Después de entrar la primera observación, Stata sabe cuántas variables tiene. Al teclear Tab después de entrar el último valor de la segunda observación en adelante, se moverá automáticamente a la primera columna de la próxima observación.
- 5. Para añadir datos una variable a la vez, oprima Enter *después de teclear cada* valor. Pulse la primera celda de la primera columna vacía. Teclee los valores de la variable oprimiendo Enter después de cada valor.

Notas que necesita saber para añadir datos

No se necesitan comillas *alrededor de valores* alfanuméricos como en otras órdenes que sí las requieren (" ") alrededor de valores alfanuméricos. Puede usar las comillas en el editor pero no es necesario.

Un punto ('.') representa un valor numérico que falta (nulo). O llamado missing

Sólo necesita oprimir Tab o Enter para añadir valores alfanuméricos nulos, esto resultará en una variable vacía (sin nada) en esta observación ó teclear ('.'). Enter

Stata no acepta columnas ni filas vacías en la base de datos.

Al añadir una nueva variable o una nueva observación siempre empieza en la primera columna o fila vacía. Si se salta una fila o columna, Stata va a rellenar la columna o fila vacía con valores nulos.

Si ve por *ejemplo*, *var3* [4] = en la parte superior del editor :

Esto corresponde a la celda seleccionada. var3 es el nombre predeterminado para la tercera variable, y [4] indica la cuarta Después de entrar la primera observación, Stata sabe cuántas variables tiene. Al teclear Tab después de entrar el último valor de la segunda observación en adelante, se moverá automáticamente a la primera columna de la próxima observación.

Para añadir datos una variable a la vez, oprima Enter *después de teclear cada* valor. Pulse la primera celda de la primera columna vacía. Teclee los valores de la variable oprimiendo Enter después de cada valor.

Observación. Si desea conservar los cambios realizados en su ventana de editor, al cerrar la ventana aparecerá un mensaje preguntando si desea conservar sus cambios, si la opción es **sí** presiones *preserve*. Estos datos solo permanecen en la memoria mas no han sido guardados en el disco duro, para tal caso deberá guardar el archivo usando el menú **File** y seleccionando **Save as**. De el nombre deseado.

Será necesario renombrar las variables con nombres que identifiquen mejor a cada una de ellas, esto lo haremos con el comando **rename** que se puede abreviar como ren)

E Stata results	
. ren var1 pais	
. ren var2 year	
. ren var3 num	
. ren var4 tasamort	
. ren var5 porcent	

Esto también se puede hacer con el editor dando doble clic en la columna de la variable que quiero renombrar y en una reemplazar el nombre anterior por el nuevo.

¿Cómo Cambiar y visualizar datos con el editor de datos?

Uso avanzado del editor de datos

Puede seleccionar las variables que van a aparecer en el editor:

Escribiendo en la ventana de órdenes:

Orden	Función
• edit id	Selecciona la variable pais
• edit pais year	Selecciona las variables pais year
Incluir cualquier número de variables, restringir el n Escribiendo en la ventana de órdenes:	úmero de observaciones que aparecen en el editor:
• edit in 1	Sólo usa la primera observación
• edit in 2	Sólo usa la segunda observación
• edit in -2	Sólo usa la penúltima observación
• edit in -1	Sólo usa la última observación
• edit in 1 (Le., I	Sólo usa la última observación
Restringir el editor a una serie de observaciones us	ando "en" (in):
• edit in 1/9	Usa de la primera a la novena observación
• edit in 2/-2	Usa de la segunda a la penúltima observación
Restringir el editor a una serie de observaciones qu condicional "si" (if):	ie sólo satisfacen una expresión matemática usando el
• edit if exp	Usa observaciones en las que la expresión exp es cierta
• edit if tasamort>15	Usa observaciones en las cuales tasamort>15
• edit if tasamort==15	Usa observaciones en las cuales tasamort es igual a 20
• edit if num==.	Usa observaciones en las cuales el valor de num falta
Combinar in e if (el orden no importa):	
• edit in 1/9 if tasamort>=1439.14	Usa de la primera a la novena observación, sólo si tasamort mayor o igual que 25
• edit if porcent<15 in 5/-1	Usa de la quinta a la última observación sólo si porcent<15
Puede seleccionar variables y restringir observacio	nes al mismo tiempo:
• edit id in 5/-5	Usa sólo la variable id de la quinta a la -5 observación.

Nota: las variables son sin acentos y no se utiliza la ñ. Deben teclearse tal con mayúsculas y/o minúsculas según esté escrito el nombre de la variable

También es posible cambiar los datos dentro del editor escribiendo sólo edit o edit *varnombre(s)*, edit if etc. ó pulsando **Data Editor** (pero no puede seleccionar variables ni observaciones), al abrir el editor pulse la celda que desea cambiar y entre el nuevo valor de la variable y teclee *Enter o Tab.* Si restringe el editor a las variables y observaciones de interés disminuye la posibilidad de cometer errores. Aunque para hacer cambios globales a los datos, es mejor usar la orden **replace**.

Para borrar variables u observaciones oprima el botón **Delete...** ; pero es preferible que para borrar varias observaciones o variables a la vez, utilice la orden **drop**.

Browser

El editor de datos puede ser usado para visualizar los datos.

Para usar el editor como un visualizador (browse):

- Oprima el botón Data Browser
- ó escriba browse en la ventana de órdenes

El visualizador no le deja cambiar los datos. Use el visualizador (browse), y no edit, cuando solamente desea examinar los datos, esto permitirá que usted no cometa un error en su base de datos que después no pueda corregir.

En el visualizador también es posible seleccionar variables y observaciones deseadas procediendo igual que con el editor. Ejemplo:

Stata results	Х
. browse pais year	
. browse in 1/13	
. browse if porcent==.	
. browse pais year tasamort in 5/-5 if porcent>=15	

Se da la orden seguida de la lista de variables y opcionalmente seguida de if y/o in.

El browse puede hacer muchas de las mismas cosas que hace la orden list. Pero es más conveniente porque lo deja desplazarse.

4 Manejo y manipulación de Datos.

Descripción de datos y etiquetas para las bases y/o las variables.

> describe y label

Función	Instrucción
Cómo describir los datos	
que tiene en memoria:	describe
que tiene guardados en el disco:	describe using c:/archive o
	"c:/archive"
Cómo ponerle etiquetas a la base de datos:	label data " <i>texto</i> "
Cómo ponerle etiquetas a las variables:	label var varnombre "texto"
Cómo ponerle etiquetas a los valores de las variables:	
Definir una etiqueta para los valores:	label define <i>etiqueta</i> # "texto1" #
	"texto2"
Asocie la etiqueta con la variable:	label values varnombre etiqueta
<i>Nota:</i> Puede asociar la misma etiqueta para valores	
con distintas variables.	
Cómo quitar la etiqueta	
de la base de datos:	label data
de la variable:	label var <i>vamombre</i>

de los valores de las variables:	label values varnombre
Cómo borrar una etiqueta para valores:	label drop <i>etiqueta</i>
Cómo cambiar una etiqueta para valores:	
Bórrela:	label drop <i>etiqueta</i>
Vuelva a definirla:	label define <i>etiqueta</i> # "texto" #
	"texto"
Cómo cambiar una base de datos permanentemente	
vuelva y guarde los datos	Del menú de File, seleccione Save.
o, teclee:	save archivo, replace

> describe

Guardamos la base de datos creada en el editor como el archivo:

save a:/ tasas. dta

I

Stata results	6					X
. use a:/tasas.dta						
. list	naid		211	togomowt	nowcont	
1 7-2	pais	1001	num EGO		porcent 2 70	
1. AI 2		1994	500	112 28	3.70	
3	Bragil	1993	5534	152	12 64	
4	Canadá	1992	26	6 52	1 07	
5.	Chile	1994	368	127.72	10.7	
6. C	Colombia	1991	1367	152.68	10.64	
7.	Cuba	1995	87	59.23	6.29	
8. Estados	Unidos	1991	607	14.77	1.65	
9. Gu	atemala	1993	4206	1439.14	33.42	
10.	México	1994	7687	264.7	15.42	
11.	Perú	1992	3275	525.77	23.2	
12. Puer	to Rico	1992	20	29.5	2.4	
13. Ve	enezuela	1993	875	166.86	7	
** Usemos la . describe Contains dat	a o orden d ca from A:\	escribe pa Yo.dta	ra descri	bir estos d	latos:	
obs:	13					
vars:	5			24 Jul	2001 19:49	
size:	390 (100.0% of	memory fr	ree)		
	·					
variable nam	storage ne type	display format	value label	variak	ole label	
pais	str14	%14s		pais		
year	int	%8.0q		Anio d	le última inform	ación
num	int	%8.0g		Total Neum	de Casos de mue nonia e Influenz	rte por a
tasamort	float	%9.0g		Tasa d	le mortalidad (x	100,000
porcent	float	%9.0g		Porcer	ntajesobre el to stes	tal de

- 1. El nombre de la variable es como nos vamos a referir a la columna de datos.
- 2. Los tipos de almacenamiento se refieren a la amplitud de los datos entrantes en la variable y si los datos son numéricos o alfanuméricos.
- 3. Los formatos de despliego controlan cómo se representan los valores en la pantalla y en los archivos de registro.

No es necesario cargar el archivo de datos en la memoria de la computadora para describirlo:

.describe using a:/Tasas

Es decir, al teclear la orden describe sin argumentos, Stata describe la base de datos que tiene en memoria, si teclea describe using *archivo*, Stata describe el contenido de la base de datos especificada. (en este caso el archivo llamado *archivo*. dta creado por Stata).

Iabel

Se le pueden poner etiquetas (labels) a una base de datos, a las variables y a los valores de las variables. Como ejemplo, usemos el archivo de tasas.dta.

.describe using a:/tasas.dta

Agreguemos a la base de datos **tasas** una nueva variables que tenga el número 1 en los países de Norteamérica, 2 en los países de Centroamérica, 3 en los países de Sudamérica, y 4 en los países del Caribe.

A esta variable ponerle el nombre de Región.

- 1. Describir la base
- 2. Con label var etiquetar la variable.
- 3. Ponerle también una etiqueta a cada uno de los números identificando la región. Esto es útil para recordar el contenido de las variables. En el caso de cuestionarios muy extensos, lo es más.

> Etiquetas para bases de datos y variables

Es decir, **label var** se utiliza para ponerle etiquetas a las variables. Ponga el texto entre comillas, por ejemplo:

.label var región "Región de América a la que pertenece:"

Así podremos etiquetar todas las demás variables y además ponerle etiquetas a los valores de las variables.

Stata resu	ılts					X
. desc						
Contains data : obs: vars: size:	Erom A:\ 13 6 442 (Tasas.dta 100.0% of	memory free	24 Jul 2	2001 19:49	
variable name	storage type	display format	value label	variable	e label	
pais year num	str14 int int	%14s %8.0g %8.0g		Pais Anio de Total de Neumon	ultima información e Casos de muerte por nia e Influenza	
tasamort	float	%9.0g		Tasa de nacido	mortalidad (x100,000 os vivos)	
porcent	float	%9.0g		Porcenta muerte	ajesobre el total de es	
Note: dat . label var ro . label defin "Caribe"	caset ha egion "R e regio	s changed egión de j n 1 "Non	since last América a la rteamerica"	saved que perten 2 "Centroa	nece" amercia" 3 "Sudameric	a" 4
. tabel value l	region r	egion				
Region de America a la que pertenece	 F	req.	Percent	Cum.		
Norteamerica Centroamercia Sudamerica Caribe	+	3 3 5 2	23.08 23.08 38.46 15.38	23.08 46.15 84.62 100.00		
Total	+	13	100.00			
. tab region, n Region de	nolabel					

America a la que pertenece	Free	1. Pe	rcent	С	um.	
1		3	23.08	23	.08	
2		3	23.08	46	.15	
3		5	38.46	84	.62	
4		2	15.38 	100	.00	
Total	1	.3 1	00.00			
. describe						
Contains data obs: vars: size:	a from A:\\ 13 6 442 (1	Casas.dta	memor	ry free)	24	Jul 2001 19:49
variable name	storage e type	display format	va va	alue abel	var	iable label
pais	strl4	%14s			Pai	.s
year	int	%8.0g			Ani	o de ultima información
No	int	%8.0g			Tot N	al de Casos de muerte por Jeumonia e Influenza
tasamort	float	%9.0g			Tas n	a de mortalidad (x100,000 macidos vivos)
porcent	float	%9.0g			Por	ccentajesobre el total de mertes
region	float	%13.0g	re	egion	Reg p	gion de America a la que pertenece
Sorted by: Note: dataset has changed since last saved						

Etiquetas para los valores de las variables

Hemos agregado la nueva variable la cual etiquetamos, también etiquetamos los valores de las variables:

Norteamérica=1, Centroamérica=2, Sudamérica=3 y Caribe=4 con label define y label value

Es decir,

- 1. **label define** para crear una etiqueta de valores. La sintaxis es label define *etiqueta # "contenido" # "contenido" ...*
- 2. **label values** para asociar la etiqueta con la variable. La sintaxis es label values *varnombre etiqueta*
- 3. Para que los cambios sean permanentes hay que volver a guardar el archivo.

La misma asignación de región que le dimos a la variable **region** se podría utilizar para otra variable que asocie los mismos números con las mismas etiquetas.

Si nos damos cuenta, al teclear *describe* en la variable region aparece en la columna de value labels el nombre region.

4 Manejo y manipulación de Datos desde Ventanas de diálogo:

Describe:

Todas las variables

🔲 describe - Describe contents of data 🛛 🛛 🔀			
Variables: (leav	ve empty for all	variables)	
, Examples:	yr [×] xyz-abc	all variables starting with "yr" all variables between xyz and abc	
Options Display of Display a Do not a Present	only general infi additional detai ubbreviate varia variable numbe	ormation Is able names er along with name	
00		OK Cancel	Submit

solo una selección de variables

describe - Describe contents of data			
Variables: (leav Id No Porcent	e empty for all	variables)	
Examples:	yr* xyz-abc	all variables starting with "yr" all variables between xyz and abc	
Options Display of Display ar Do not at Present v	nly general info dditional detail obreviate varia ariable numbe	ormation s ble names r along with name	
00		OK Cancel	Submit

Etiquetas de variables:

label variable - Attach a label to a variable 🛛 🛛 🔀				
Variable: Anio				
 Attach label to variable: (i Anio de ultima información 	up to 80 characters on)		
C Remove label from variab	le			
00	ОК	Cancel	Submit	

Etiquetas de valores 1) defin<u>ir la variable</u>

Define new label	×
Label name	
J	
OK	Cancel

2) A cada valor ponerle su etiqueta:

Define value labels	×	erte nor
Define label names	Value labels 1 Norteamerica	erte por a btal de a btal de
Define. Drop	Add Modify	×
Id No Porcent, fullnames storage display value ne type format label	Value 2 Text Centroamerica	
str14 %14s int %8.0g		Cancel

Funciones o métodos abreviados.

• La ventana de repaso (Review window) contiene las órdenes dadas anteriormente. Si usted pulsa una vez cualquier orden previa localizada en la ventana Review, ésta será copiada a la ventana de órdenes. Si pulsa doblemente cualquier orden previa ésta será copiada y ejecutada.

• Si crea un archivo de registro (log) podrá ver todas las órdenes y los resultados anteriores.

En la ventana de variables (Variables window) se ven las variables actualmente en la memoria. Pulse una vez cualquier variable y el nombre será copiado a la ventana de órdenes. (Si pulsa doblemente, la variable se copiará dos veces). Esta ventana tiene una barra de desplazamiento.

El texto en la ventana de órdenes se edita de la misma manera que el texto en las ventanas de Windows. Las teclas para editar texto en la ventana de órdenes son:

Delete o Supr Backspace	Borra caracteres a la derecha del cursor Borra caracteres a la izquierda del cursor
Esc	Borra la línea completa
Home o Inicio	Mueve el cursor al principio de la línea
End o Fin	Mueve el cursor al final de la línea
Page Down o Re Pág	Se mueve hacia abajo
Page Up o Av Pág	Recupera la orden anterior

Page Down Se mueve hacia abajo. Hace lo contrario de Page Up que se mueve el cursor hacia arriba.

(Las teclas Page Up y Page *Down* hacen lo mismo que pulsando una vez cualquier orden en la ventana de repaso.)

Listar datos

➤ list (lista)

La orden list y la orden browse son muy parecidas.

Función	Orden
Para listar en la ventana de resultados, teclee:	. list
Si la palabramore (más) aparece en la	
ventana de resultados, lo cual pasa con listas largas,	
Para ver la próxima línea:	Teclee Enter.
Para ver la próxima pantalla:	Oprima cualquier tecla.
0:	Oprima el botón More.
Para interrumpir completamente una orden de Stata	
y regresar al estado en que se	Oprima el botón Break.
encontraba antes e dar la orden:	•
0:	Teclee <i>Ctrl-Break</i> .
Para listar una variable sola:	list varnombre
Ejemplo:	list pais
list se puede abreviar:	1 pais
También puede abreviar	list pa
el nombre de la variable:	
--	-------------------------------------
Parar listar varias variables:	list vamombres(s)
Ejemplo:	list pais year
Puede abreviar:	1 pais year
Para listar de la variable varnombrei a vamombrej:	list vamombrei-vamombrej
Ejemplo:	list pais-porcent
Puede abreviar:	1 pais-porcent
Para listar las variables que empiezan con	
la letra p:	list p*
Puede combinar todo lo anterior:	list year-tasamort p*
Para listar la tercera observación:	list in 3
la penúltima observación:	list in -2
la última:	list in -1
la primera:	list in 1
Para listar de la primera a la tercera observación: <i>list in</i> $1/3$	
de la 5 ala 17:	list in 5/17
de la 3 a la penúltima:	list in 3/-2
Puede combinar todo lo anterior:	list year-tasamort p* in 3/-3
Para listar observaciones que satisfacen una	
condición, use <i>if exp</i> (si la expresión):	list if exp
Ejemplo:	list if year==1992
Puede combinar todo lo anterior:	list year-tasamort p* if year==1992
	list year-tasamort pop* if
	year==1992 in 3/-3
Todo lo que aparece en la ventana de resultados,	
incluyendo la lista producida por list,	
puede ser registrado en un archivo (log)	
Especificar que se dibujen líneas horizontaleles entre las observaciones	list, separator(5)

Notas

- 1) La orden list sin argumentos produce una lista de todas las observaciones y variables. Puede oprimir el botón **Break** e interrumpir la lista en cualquier momento.
- 2) Puede producir una lista de un subconjunto de variables especificando los nombres de las variables. Por ejemplo: produce una lista de las variables pais year num. Puede abreviar: list p* produce una lista de las variables que empiezan con la letra p. list pais-num produce una lista de todas las variables localizadas entre las variables pais y num, dependiendo en órden en que usted las tenga.
- 3) Puede abreviar list como I (la letra I).
- 4) Hay que tomar en cuenta que "in" restringe la lista a un rango de observaciones, los números positivos cuentan desde la primera observación hacia abajo mientras que los números negativos cuentan desde la última observación hacia arriba.

listas usando "if"									
	Stata results								Х
. li:	st								
-	pais	year		num	tasa	mort	porcent	region	
1.	Argentina	1994		560	8	33.11	3.78	Sudamerica	
2.	Belice	1989		5	11	3.38	4.63	Centroamercia	
3.	Brasil	1993		5534		152	12.64	Sudamerica	
4.	Canada	1992		26		6.52	1.07	Norteamerica	
5.	Chile	1994		368	12	27.72	10.7	Sudamerica	
6.	Colombia	1991		1367	15	52.68	10.64	Norteamerica	
7.	Cuba	1995		87	5	59.23	6.29	Caribe	
8.	Estados Unidos	1991		607	1	4.77	1.65	Norteamerica	
9.	Guatemala	1993		4206	143	39.14	33.42	Centroamercia	
10.	Mexico	1994		7687	2	264.7	15.42	Centroamercia	
11.	Peru	1992		3275	52	25.77	23.2	Sudamerica	
12.	Puerto Rico	1992		20		29.5	2.4	Caribe	
13.	Venezuela	1993		875	16	6.86	7	Sudamerica	
. lis	t if region==2								
	pais	year	num	tasam	ort	porcent		region	
2.	Belice	1989	5	113	.38	4.63	Centroa	mercia	
9.	Guatemala	1993	4206	1439	.14	33.42	Centroa	mercia	
10.	Mexico	1994	/68/	20	4./	15.42	Centroa	mercia	
. lis	t if region==2 &	tasamort>15							
	pais	year	num	tasam	ort	porcent		region	
2.	Belice	1989	5	113	.38	4.63	Centroa	mercia	
9.	Guatemala	1993	4206	1439	.14	33.42	Centroa	mercia	
10.	Mexico	1994	7687	26	4.7	15.42	Centroa	mercia	
. lis	t if region==2 &	tasamort>15	& por	cent<10					
	pais	year	num	tasam	ort	porcent		region	
2.	Belice	1989	5	113	.38	4.63	Centroa	mercia	
. lis	t if region==2 1	region==1 &	(tasam	nort>15	& por	cent<10)			
	pais	year	num	tasam	ort	porcent		region	
2.	Belice	1989	5	113	.38	4.63	Centroa	mercia	
9.	Guatemala	1993	4206	1439	.14	33.42	Centroa	mercia	
IU.	MEXICO	1994	/80/	26	4./	15.42	Centroa	mercia	

En muchas de las órdenes de Stata es necesario utilizar condiciones como en el edit, browse, list, generete, etc., los más utilizados son los mencionados en los ejemplos anteriores como el "if" que es el condicional "si". "if *exp"* quiere decir: si la expresión *(exp)* es cierta. Algunas expresiones pueden ser más complicadas como el "'&" que es la conjunción "y", y el " | " es la conjunción "o".

Los operadores lógicos son:

<	menor que
<=	menor que o igual
==	igual
>=	mayor que o igual
>	mayor que
~=	no es igual
&	la conjunción: y
	la conjunción: o
~	no (la negación lógica)
()	paréntesis para especificar la orden de las operaciones

La conjunción siempre es evaluada antes de la conjunción |; así que, **a** | **b&c** resulta en **a** | (**b&c**), lo cual es cierto si **a** es cierto o si **b** y **c** son ambas cierto. Para especificar que **a** o **b** sea cierto, y que **c** también sea cierto, escriba (**a** | **b**)&c.

4 Crear variables nuevas

generate y replace (crear y reemplazar)

Para crear una variable nueva la cual contiene el resultado de una expresión algebraica generate *newvar = exp* La orden generate (crear o generar) se puede g*newvar = exp* abreviar: Para cambiar (reemplazar) el contenido de una replace *o1dvar = exp* variable:

La orden replace no se puede abreviar.

exp es una expresión algebraica que puede ser una combinación de otras variables, operadores y funciones.

	Matemáticos	Lógicos	Rel (nu alfai	acionales méricos y numéricos)
+	adición	~ no ó !	>	mayor que
-	substracción	O	<	menor que
*	multiplicación	& y	>=	> o igual
/	división		<=	< o igual
\wedge	exponente		==	igual
			~= Ó !=	no es igual
+ C0	oncatenación de va	alores alfanum	iéricos	-

Operadores:

Algunos ejemplos de funciones que se pueden utilizar con el generate son:

Cos(), exp(), ln(), lnfact(), sqrt(), chiprob(), fprob(), uniform(), lower(), real(), rtrim(), string(), substr(), upper(), date(), day(), dow(), mdy(), month(), year(), e(sample), float(), max(), min(), missing(), recode(), sum().

generate (crear, generar)

La sintaxis de la orden generate es

generate nuevavar = exp

donde nuevavar es el nombre de la variable nueva (tiene que ser un nombre nuevo, distinto al nombre de las otras variables en la base de datos) y exp es cualquier expresión válida. La orden generate puede abreviarse como *g*, *ge*, *gen*, etc. Dicha expresión puede ser una combinación de variables, operadores y funciones. Las expresiones pueden ser simples o complejas. Cuando se generan valores nulos o missing, Stata informa del número de éstos generados al generar la nueva variable. Si no se presenta el mensaje, quiere decir que no creó ningún valor nulo.

	Stata results					X			
. gei	. gen nacvivos=num/tasamort								
. bro	owse								
. li	st pais num tasa	mort nacv	vivos, table	e clean					
	pais	num	tasamort	nacvivos					
1.	Argentina	560	83.11	6.738058					
2.	Belice	5	113.38	.0440995					
3.	Brasil	5534	152	36.40789					
4.	Canada	26	6.52	3.98773					
5.	Chile	368	127.72	2.881303					
б.	Colombia	1367	152.68	8.953367					
7.	Cuba	87	59.23	1.46885					
8.	Estados Unidos	607	14.77	41.09682					
9.	Guatemala	4206	1439.14	2.922579					
10.	Mexico	7687	264.7	29.04042					
11.	Peru	3275	525.77	6.228959					
12.	Puerto Rico	20	29.5	.6779661					
13.	Venezuela	875	166.86	5.243917					

Al generar una variable hay que especificar que tipo de variable es, siempre y cuando ésta sea alfanumérica.

En ocasiones es posible que aparezca un mensaje de error "type mismatch" (tipo equivocado), esto ocurre porque **generate** por defecto crea variables numéricas en las cuales no se pueden guardar valores alfanuméricos. Para crear una variable alfanumérica se tiene que declarar, inmediatamente antes del nombre, el tipo y dimensión de la variable.

Cuando se usa el operador '+' con variables alfanuméricas, éstas se unen. Por ejemplo: la expresión **"esto" + "eso"** resulta en el valor alfanumérico **"estoeso"**.

replace (reemplazar)

Generate se usa principalmente para crear nuevas variables, sin embargo es necesario usar la orden replace para cambiar los valores de las variables que existen.

La orden replace no se puede abreviar. Por razones de seguridad Stata no deja que se abrevien órdenes que cambian datos.

	Stata results						
. re	. replace nacvivos= nacvivos*100000						
(13	(13 real changes made)						
. li	list pais num tasamort nacyiyos table clean						
	pais	num	tasamort	nacvivos			
1.	Argentina	560	83.11	673805.8			
2.	Belice	5	113.38	4409.949			
3.	Brasil	5534	152	3640790			
4.	Canada	26	6.52	398773			
5.	Chile	368	127.72	288130.3			
б.	Colombia	1367	152.68	895336.8			
7.	Cuba	87	59.23	146885			
8.	Estados Unidos	607	14.77	4109682			
9.	Guatemala	4206	1439.14	292257.9			
10.	Mexico	7687	264.7	2904042			
11.	Peru	3275	525.77	622895.9			
12.	Puerto Rico	20	29.5	67796.61			
13.	Venezuela	875	166.86	524391.7			

4 Borrar variables y observaciones

> clear, drop y keep (limpiar, borrar y retener)

Función	Orden
Borrar todos los datos de la memoria de la	
computadora:	clear
O:	drop_all
Borrar una variable sola:	drop varnombre
Ejemplo	drop pais
Borrar varias variables a la vez:	drop pais year
Borrar la variable varnombre; a la variable varnombre;	
	drop varnombre/-varnombre/
Ejemplo	drop tasamort-nacvivos
Borrar todas las variables que empiezan con p:	
	drop p*
Combinar:	drop tasamort-nacvivos a*
Borrar una determinadan observación en la base:	drop in # (renglón)
Borrar observaciones condicionalmente:	drop if exp
Ejemplo	drop if region==4
O combinando	drop if region==4 in 3/-3
La orden keep es parecida al drop pero tiene que	
especificar las variables u observaciones que quiere	
retener	keep if region==4 in 3/-3

Análisis exploratorio de datos

El análisis exploratorio de datos es la primera fase del análisis estadístico. Se puede realizar mediante el cálculo de diferentes estadísticos y mediante la presentación gráfica de la información. Estos procedimientos son de gran utilidad ya que permiten resumir grandes cantidades de información utilizando procedimientos estandarizados muy simples, que son accesible en casi todos los paquetes estadístico comerciales.

Como se mencionó anteriormente, las técnicas de análisis exploratorio de datos se utilizan en las primeras fases del análisis estadístico y sirven para:

a) Evaluar la calidad y consistencia de la información

b) Detectar valores "Fuera de serie "(VFS) o " no plausibles"

c) Investigar la distribución de las variables de interés

d) Investigar adherencia a las suposiciones estadísticas, que se deben cumplir en etapas posteriores del análisis estadístico

e) Resumir información mediante diferentes estadísticos y gráficos

f) Explorar formas de categorizar variables (puntos de corte)

En cualquier investigación es necesario evaluar la calidad y consistencia de la información antes de iniciar cualquier análisis estadístico. Este análisis inicial permite detectar sesgos sistemáticos, que de ignorarse, podrían ser la principal fuente de sesgos. En el campo de la investigación epidemiológica, se recolecta información sobre un gran número de variables, ya sea mediante cuestionario o con instrumentos de medición. En ocasiones se utilizan datos de fuentes secundarias que no están sujetos a controles de calidad estrictos, por lo que es conveniente realizar evaluaciones completas. Por ejemplo, cuando se obtiene información de las estaciones de monitoreo ambiental, se pueden detectar valores negativos o valores muy exagerados. La falla en detectar y corregir estos valores podría condicionar la introducción de errores importantes.

Las evaluaciones iniciales que se realizan dependen de la naturaleza de los datos obtenidos. Frecuentemente, la evaluación que se realiza es la búsqueda de valores no plausibles o valores faltantes en la escala de medición de los valores plausibles.

Existen diferentes criterios de valoración que pueden ayudar a los investigadores a tomar decisiones sobre valores que potencialmente podrían ser considerados como errores o valores aberrantes <u>-</u> outliers-.

42

En general los valores aberrantes se identifican como valores que se encuentran lejos del total de observaciones y estas se diferencian notablemente de la nube de puntos. Existen diferentes criterios y técnicas estadísticas para el tratamiento de los valores aberrantes. Sin embargo, la acción mas importante es la de identificar plenamente la fuente de error. Es muy importante poder diferenciar si se trata de una observación con plausibilidad biológica -es decir dentro del rango de observaciónes-, o de una observación no plausible, que queda fuera del rango de mediciones posibles. En el primer caso se recomienda dejar el valor observado y explorar su efecto en las etapas subsecuentes del análisis estadístico. En el segundo caso se recomienda excluir el valor, para análisis subsecuentes. En ambos casos es recomiendable consultar las fuentes primarias de información para descartar la posibilidad de error.

Mediante las técnicas de análisis exploratorio de datos, es posible estudiar la distribución de la información, detectar asimetrías, rangos observados, así como los valores máximos y mínimos. La información sobre la distribución de las variables es importante, ya que muchas de las técnicas estadísticas utilizadas a menudo, asumen una serie de suposiciones sobre el comportamiento y distribución de la variables en estudio. Así por ejemplo, la regresión lineal simple considera que la variable dependiente debe estar normalmente distribuida. Cuando no se cumplen las suposiciones sobre la distribución, se puede realizar una transformación de la variable, de tal manera que la re-expresión de esta si cumple con los requisitos de normalidad. Finalmente, el análisis exploratorio de datos es importante y permite identificar re-expresiones de las variables para recategorizar o re-expresar en una escala de medición diferente. Por ejemplo en cuartiles o terciles.

Por otra parte los métodos utilizados proporcionan al investigador métodos gráficos, de fácil interpretación, que son muy útiles para la presentación gráfica de la información.

Técnica	Instrucción en Stata
Estadísticas univariadas	summarize y summarize, detail
	tab (frecuencias)
 Diagrama de tallo hoja 	stem
Diagrama de letras	lv
• Diagrama de caja	graph box nomvar, medtype(line)
Gráfica de simetría	symplot, qnorm
Normalidad	sktest, swilk
Medias	means

Las técnicas comúnmente utilizadas para variables continuas son:

Gráficos

Stata cuenta con una gran variedad de gráficos, stata (ha modificado las presentaciones de los gráficos de tal manera que puedan ser utiles para publicaciones. Las nuevas gráficas, proveen no solo flexibilidad en su apariencia, sino tambien en su contenido. Las gráficas pueden contener líneas gruesas o claras, regiones de confidencia sombreadas y otros componentes gráficos basados en y calculados de los datos. Estas se implementan en el nuevo idioma de programación orientada a objetos de Stata y eso significa que los usuarios que se sienten motivados pueden agregar esquemas nuevos estilos nuevos, tipos nuevos y características nuevas. Estas adiciones nuevas se pueden obtener y pueden ser instaladas automáticamente por medio del Internet, usando las órdenes net y update que actualmente posee Stata. Las gráficas nuevas de Stata tienen un número casi ilimitado de opciones, y la GUI de Stata provee una interfase fácil de usar para esas opciones a través de sus diálogos. Los diálogos nuevos de las gráficas permiten que cambie fácilmente los títulos, los colores, los símbolos de los marcadores, las líneas cuadriculadas, etc. sin requerir editores externos de gráficas para que la gráfica se vea como usted quiere. Las gráficas pueden ser exportadas también a otros formatos tal como PostScript y PNG (Gráfica Portátil de la Red o Portable Network Graphics).

Algunos tipos de g´raficos son:

- o Histogramas
- o Caja
- o Tallo y hoja
- o Scatterplot
- o Estrella
- o Pastel

Gráfico de Barras:

Podemos hacer los gráficos de dos formas como todas las órdenes de STATA, a partir de los menús y ventanas de diálogos, para abreviar las rutas que hay que seguir desde los menus y submenús de gráficos en el caso del siguiente gráfico de barras podemos seguir los pasos siguientes:

🗖 graph bar - Bar chart 🛛 🕅	🗖 graph bar - Bar chart 🛛 🔀
Main Over if/in Titles Y-Axis Options	Main Over ii/in Titles Y-Axis Options
Statistic: Variable(s): mean eddd rombre eddd sex0 ocupacion edocivil fuma Stack bars (over Y-varia escolariad peso Percentages of total (ov talla	Over 1 Variable: ? Over 2 ? Variable: ? Relabet: ? Relabet: ? ocupacion ? edocivil ! umo escolaridad peso talla
OK Cancel Submit	OK Cancel Submit

Entrar al menu graphs Graphics / Easy graphs / Bar chart/

🗖 graph bar - Bar chart 🛛 🔀	graph bar - Bar chart
Main Over if/in Titles Y-Axis Options	Main Over it/in Titles Y:Axis Options
Title Title: Distribución de Edad Size: Default Versition: Default	Title: Media de Edad Title size: Default
Subitle Subitle: Alumnos INSP/ESPM. Generación 2003-2005 Size: Default V Position: Default V	Tick rule:
Caption Caption: 1=Hombre 2=Mujer Size: Default V Position: Default V	
Note Note: Base generada por los alumnos Size: Default Position: Default	
O DK Cancel Submit	OK Cancel Submit

submit o OK

La instrucción o la orden completa para dicho gráfico sería:

.graph bar (mean) edad, over(sexo, relabel(1 "Hombre" 2 "Mujer")) over(fuma, relabel(1 "Fuma" 2 "No Fuma")) title(Distribución de Edad) subtitle(Alumnos INSP/ESPM. Generación 2003-2005) caption(1=Hombre 2=Mujer) note(Base generada por los alumnos) ytitle(Media de Edad) ylabel(#8) scheme(s2color) snack

si el gráfico lo queremos hacer separando además por estado civil intercambiando con colores a los hombres y mujeres:

.graph bar (mean) edad, over(sexo, relabel(1 "Hombre" 2 "Mujer")) over(fuma, relabel(1 "Fuma" 2 "No Fuma")) over(edocivil, relabel(1 " soltero" 2 " casado" 5 " Union libre")) title(Distribución de Edad) subtitle(Alumnos INSP/ESPM. Generación 2003-2005) caption(1=Hombre 2=Mujer) note(Base generada por los alumnos) ytitle(Media de Edad) ylabel(#8) scheme(s2color)stack

Histogramas

.histogram peso

.histogram peso, by(sexo)

Bax plot (caja)

.graph box peso, medtype(line) by(sexo)

.graph box peso, medtype(cline) medline(lcolor(red) lwidth(medthick)) by(sexo, title(Alumnos. Generación 2003-2005)) box(1, bfcolor(none) blcolor(blue) blwidth(medthick)) ytitle(Peso en Kg)

.graph box peso, medtype(line) over(sexo, relabel(1 "Hombre" 2 "Mujer")) by(fuma, graphregion(fcolor(white) lcolor(black)) plotregion(fcolor(white) lcolor(black)) title(Distribución de peso) subtitle(Alumnos INSP/ESPM. Generación 2003-2005) caption(!=Fuma 2=No fuma)) box(1, bfcolor(blue) blcolor(black) blwidth(medthick)) mark(1, msymbol(smtriangle)) yline(69, lwidth(medthick)) scheme(s2color) plotregion(fcolor(white) ifcolor(white))

Scatterplot

scatter peso talla

.twoway (scatter peso talla) (connected peso talla, sort connect(direct)) (lfit peso talla, sort clwidth(thick)), ytitle(Peso en Kg) xtitle(Estatura en mts) title(Relación Peso-Talla) legend(off)

.twoway (scatter peso talla) (connected peso talla, sort connect(direct)) (lfit peso talla, sort clwidth(thick)), by(sexo, cols(1) title(Relación Peso-Talla) subtitle(Alumnos ESPM/INSP. Generación 2003-2005) caption(1=Hombre 2=Mujer) note(Base generada por los alumnos) legend(off)) ytitle(Peso en Kg) xtitle(Estatura en mts) legend(off)

Dot plot

.graph dot (mean) peso, over(edocivil) by(fuma, title(Distribución de peso y talla por estado civil y sexo) subtitle(Alumnos ESPM/INSP. Generación 2003-2005) caption(1=Hombre 2=Mujer)) mark(1, msymbol(smdiamond) msize(medium)) linetype(dot)

Pastel

graph pie, over(sexo) title(Distribución por sexo) subtitle(Alumnos generacion 2003-2005) plabel(_alpercent)

Estadísticas Univariadas

Las estadísticas univariadas incluyen la media, la mediana y diferentes percentiles, moda, los valores máximos y mínimos, así como las medidas de dispersión (rango, desviación estándar), comúnmente utilizadas en estadística para resumir información.

Para ilustrar los diferentes estadísticos y gráficos utilizados se emplearán algunas bases de datos obtenidas de investigaciones epidemiológicas realizadas por investigadores del Instituto Nacional de Salud Pública.

Inicialmente se utilizará la información relativa a un estudio realizado en la Ciudad de Tapachula, Chiapas, en el que se midieron parámetros seminales en hombres y se aplicó un cuestionario de exposición a DDT y sus metabolitos. Las mediciones de parámetros seminales se encuentran en diferentes unidades, pero principalemente son porcentajes de funcionalidad.

La base de datos se encuentra en Stata, y se puede acceder a la misma mediante el programa con el comando *use*

Stata r	esults							X
.use a: fer	til							
.describe								
Contains data obs: vars: size:	from a:\ 144 11 6,912 (fertil.c	lta E memory fr	30 (ee)	Jul 2001	23:46		
variable name	storage type	display format	y value label	var	iable lab	pel		
folio morf morfnor cpdroplm motrapi motprog motabc volumen densid cta_tot abstin Sorted by:	long float float float float float float long float	<pre>%8.0g %9.0g %9.0g %9.0g %9.0g %9.0g %9.0g %12.0g %12.0g %9.0g</pre>		mor mea mot mot vol den cue: día	fología fología r n morphol ilidad rá ilidad p ilidad ti umen sidad del nta total s de abst	normal (%) logy cpdropl ápida rogresiva ipo a+b+c l semen l de esperma tinencia	IS	
🕨 sum								
. summarize	volume	en						
Variable	(Obs	Mean	Std. De	v.	Min	Max	
volumen		144	1.753125	.940488	2	.1	4.65}	

. sui	m volumen,deta	ail			
		volumen			
	Percentiles	Smallest			
1%	.15	.1			
5%	.6	.15			
10%	.8	.3	Obs	144	
25%	1.025	.4	Sum of Wgt.	144	
50%	1.5		Mean	1.753125	
		Largest	Std. Dev.	.9404882	
75%	2.275	4.25			
90%	3	4.4	Variance	.8845181	
95%	3.7	4.6	Skewness	.9912472	
99%	4.6	4.65	Kurtosis	3.76054	

Las estadísticas que se obtienen con la instrucción *summ* o *summarize* son de gran utilidad, ya que permiten evaluar los valores máximos y mínimos, así como los puntos de corte para los percentiles más utilizados. La "Skewness" y la "Kurtosis" proporcionan información sobre la simetría de la distribución. (para skewness el valor esperado es cero cuando la distribución es perfectamente simétrica y para la Kurtosis el valor esperado es de 3 cuando la distribución es normal).

Los percentiles son estadísticas que indican la posición de diferentes valores en relación al resto de las observaciones y estas se obtienen al ordenar las observaciones de menor a mayor.

En el ejemplo el percentil 50 o la mediana es el valor 1.5, es decir el 50% de las observaciones tienen un volumen igual o menor que 1.5 ml.

> means					
Stata rea	sults				X
. means volum	men				
Variable	Type +	0bs	Mean	[95% Conf. Interval]	
volumen	Arithmetic	144	1.753125	1.598204 1.908046	
	Geometric	144	1.501494	1.359277 1.658591	
	Harmonic	144	1.178716	.9842439 1.468961	

Otra manera de presentar los datos es mediante el cálculo de las medias armónica y geométrica.

La media armónica se define como:

Media harmónica=
$$\frac{n}{\sum \frac{1}{xi}}$$

La media geométrica se define como:

Media geométrica=
$$e^{\sum \frac{\ln(xi)}{n}}$$

Existen otros estimadores del centro de la distribución que se basan en la exclusión de cierta proporción de los valores **extremos.** Estos estimadores se conocen como *"trimmed means"* o medias recortadas

La manera de estimar las medias recortadas se puede entender fácilmente comparando la manera de estimar la media y la mediana. Para estimar la media se asume que todas las observaciones tienen un peso específico igual a 1.

De esta manera, es posible definir medias recortadas (MR), una MR (0.0) es equivalente a la media. La mediana se obtiene al eliminar (1 -(1/(2n)) observaciones; MR (0.05) elimina el 5% de las observaciones. Para eliminar las observaciones es necesario ordenar la variable de mayor a menor y eliminar los valores extremos que corresponden al porcentaje que se requiere eliminar. Al comparar las medias con diferentes proporciones de exclusión de datos, se puede evaluar el efecto de los valores extremos sobre la media.

Stata resul	ts					X
. sum volumen						
Variable	Obs	Mean	Std. Dev.	Min	Max	
volumen	144	1.753125	.9404882	.1	4.65	
. sum volumen if	volumen>.	.15 & volur	men<4.6			
Variable	Obs	Mean	Std. Dev.	Min	Max	
volumen	142	1.744366	.9044825	.15	4.6	
. sum volumen if	volumen>.	.6 & volume	en<3.7			
Variable	0bs	Mean	Std. Dev.	Min	Max	
volumen	129	1.679845	.7114718	.6	3.65	
. sum volumen if	volumen>.	.8 & volume	en<3			
Variable	0bs	Mean	Std. Dev.	Min	Max	
volumen	116	1.612069	.5652864	.8	2.95	
		0.05	0.075			
. sum volumen if	volumen>]	L.025 & VO.	Lumen<2.275			
Variable	Obs	Mean	Std. Dev.	Min	Max	
volumen	72	1.5875	.3291849	1.05	2.25	

Comparando estos valores con los de la mediana(1.5), y las medias armónica (1.17) y geométrica (1.50) se puede observar como estos estimadores de la muestra son mas resistentes al efécto de los valores extremos y cómo tienden a disminuir conforme eliminamos algunas observaciones. La media recortada en el 75% es 1.58.

Х

Diagrama tallo-hoja stem

En su estructura más simple, se trata de una serie de números. La presentación del tipo de tallo-hoja permite explorar la estructura de los datos, mediante este gráfico se puede evaluar:

- Si la estructura es simétrica
- La dispersión
- Situación especial de algún valor
- Concentración de datos
- Valores faltantes dentro de la serie
- Patrones de dispersión y errores de dígitos

El procedimiento para construir este tipo de gráfico es muy simple y consiste en una presentación de los datos ordenados de mayor a menor. Así por ejemplo, en el caso de los datos de nuestro ejemplo de volumen:

Valores de volumen ordenados de menor a mayor y tabulados para gráfico de tallo hoja en decenas. Cuando se realizan los diagramas de tallo-hoja a mano, la manera de calcular el número de intervalos y la amplitud de los intervalos es la siguiente: para el número de intervalo es L=[10xlog(10)n] y para la amplitud del intervalo se divide L entre la amplitud de valores observados en los datos. Para el caso de los datos de volumen L=[10xlog(10)144]=21, se estiman 21 intervalos; como la amplitud de los datos va de 0.1 a 4.65, se estima una amplitud de 5.78. Otro método para estimar el número de intervalos es raíz de n, en este caso sería 12.

La instrucción que se utiliza es:

Stem variable

Stata results

```
. stem volumen
Stem-and-leaf plot for volumen (volumen)
volumen rounded to nearest multiple of .01
plot in units of .01
  0**
       10,15
  0**
        30
  0**
        40,45,55,55
  0**
        60,60,60,65,70
  0**
        80,80,80,85,85,85,85,85,85,90,90,90,95
  1**
        00,00,00,00,00,00,00,00,00,00,00,05,10,10,10,10,15,15,15
  1**
        20, 25, 25, 25, 25, 30, 30, 30, 30, 30, 30, 30, 30, 35, 35, 35, 35
  1**
       40,40,40,45,45,45,45,45,45,50,50,50,50,50
        60,60,65,65,70,70,75,75,75
  1**
  1**
        80,80,80,80,80,80,80,85,85,85,95,95,95
  2**
      00,00,00,00,05,10,10,15,15,15
  2**
       20,25,30,30,30,35,35
  2**
        40,45,45,45,50,50,50,50,55
  2**
        65,65,70
  2**
        80,90,95
  3**
        00,00,05
  3**
        35
  3**
        40,50
  3**
        60,65,70
  3**
        80,85
  4**
        00
  4**
        25
  4**
        40
  4**
      60,65
```

Don de por ejemplo:

0^{**} | 10,15 corresponde a los valores mínimos: valor de 0.10 y otro de 0.15

0** | 30 corresponde una observación con valor de 0.30

- 1** | 00,00,00,00,00,00,00,00,00,00,00,05,10,10,10,10,15,15,15
- 4^{**} | 60,65 corresponden a los valores máximos uno de 4.60 y otro de 4.65

En la gráfica del ejemplo podemos observar que la distribución de las frecuencias está un poco sesgada hacia uno de los lados, es decir hacia la izquierda, lo cual ocasiona que la distribución de la misma no sea normal.

Gráfico de letras (lv)

Al igual que el gráfico de tallo-hoja, el diagrama de letras se basa principalmente en el ordenamiento de los datos, **de menor** a mayor, y en el cálculo de diferentes estadísticos que evalúan el impacto de los extremos de la distribución, "de las colas", de los datos, asumiendo diferentes puntos de corte. El nombre de diagrama de letras se origina en el hecho de que a cada punto de corte se le ha asignado una letra.

El procedimiento para obtener los estadísticos de diagrama de letras, consiste en ordenar los datos -de menor a mayor- y en extraer información sobre los valores que definen el punto medio (la mediana), los que definen los cuartos, es decir los percentiles 25 y 75; los octavos con los percentiles 12.5 y 87.5, los y dieciseisavos, los treintadosavos, y así sucesivamente.

				Punto de	e corte en %
Fracción de corte	Símbolo	%	Fracción	Inferior	Superior
Mediana	Μ	0.5	1/2	50.0	50.0
Cuartiles	F	0.25	1/4	25.0	75.0
Octiles	E	0.125	1/8	12.5	87.5
Dieciseisciles	D	0.0625	1/16	6.25	93.75
Treintaidosciles	С	0.03125	1/32	3.125	96.87
Sesentaicuatrosciles	В	0.01562	1/64	1.56	98.44
Cientoveintiochoavos	А	0.00781	1/128	0.78	99.22

Como ya se mencionó, a cada punto de corte se le ha asignado una letra, esta asignación es arbitraria, es decir no sigue un orden particular, pero es la que se usa convencionalmente en la representación gráfica.

A continuación se examinará el diagrama de letras para una de las variables de estudio:

	Stata	results					X
. lv	morf						
#	139		morfología				
м	70		1.435		spread	pseudosigma	
F	35.5	1.37	1.4625	1.555	.1849999	.1386847	
Е	18	1.29	1.46	1.63	.34	.1489038	
D	9.5	1.245	1.54625	1.8475	.6025	.1997806	
С	5	1.21	20.2475	39.285	38.075	10.39295	
В	3	1.2	20.3	39.4	38.2	9.218723	
A	2	1.2	20.32	39.44	38.24	8.466334	
Z	1.5	1.2	29.71	58.22	57.02	11.91776	
	1	1.2	39.1	77	75.8	14.70818	
					# below	# above	
inner	fence	1.0925		1.8325	0	10	
outer	fence	.8150002		2.11	0	7	

La primera línea # 139 morfología muestra el número de observaciones y la etiqueta de la variable.

La segunda línea, M 70 | 1.435, contiene información sobre la mediana y el número de observaciones que se encuentran por debajo de la mediana. En este caso la mediana es de 1.435 y separa 70 observaciones. En la segunda línea aparecen las estadísticas asociadas con los cuartos, lo que corresponde a la letra F. El 1.37 y 1.555 marcan los valores límite para el cuartil inferior (percentil 25) y el cuartil superior (percentil 75). La cifra de 35.5 indica que, por debajo y por arriba de estos puntos de corte, quedan 165 observaciones (17.25 en cada extremo). El valor 1.4625 indica el punto medio de las observaciones que quedan entre los puntos de corte inferior y superior, en este caso (1.37+1.555)/2.

Si la distribución fuese perfectamente simétrica, se esperaría que los punto medios fueran iguales a la mediana. El *"spread"* o dispersión, se obtiene al calcular la diferencia entre el valor del límite superior y el

inferior, en este caso 1.555 -1.37. La *pseudosigma* es una estimación de la desviación estándar, -para el cálculo se asume que la variable se distribuye normalmente- utilizando los valores que quedaron en los extremos de cada punto de corte. Si la variable tiene una distribución normal, los valores para los diferentes puntos de corte deben ser similares. En la interpretación de los valores de la pseudosigma se puede inferir lo siguiente: a) si se observan valores decrecientes, se puede concluir que tiene menor dispersión que la distribución normal; b) si se incrementa ello indicaría mayor dispersión; ambos comportamientos indican asimetrías en la distribución.

En la parte inferior del diagrama se presenta información sobre los valores que se encuentran separados de la nube de puntos. Es importante detectar estos valores, ya que dentro del análisis estadístico ameritan atención especial puesto que pueden tener un impacto importante sobre los resultados y conclusiones. Como ya se mencionó, estos valores pueden deberse a errores reales, en cuyo caso deben corregirse o excluirse del análisis, o a valores reales, con cierta plausibilidad, en cuyo caso deben incluirse en el análisis y evaluarse en términos del impacto que tienen sobre los resultados y conclusiones. Una alternativa es excluirlos de análisis final y evaluar la diferencia en los resultados.

Como convención, se definen dos puntos de corte y se cuenta el número de observaciones que quedan dentro de ellos; éstas observaciones merecen atención especial.

La información se presenta en dos categorías que marcan lejanía hacia la nube de puntos. En general, se manejan dos puntos de corte basados en el rango intercuartil. Los puntos de corte se definen como **límite interno**, que identifica los puntos que podrían ser considerados como valores aberrantes o "outliers" y el **limite externo**, que identifica los valores con una alta probabilidad de ser aberrantes. Si las observaciones se originaran de una distribución normal, los valores para el límite interno equivaldrían a -2.698 σ y a +2.698 σ , y para los límites externos a -4.721 σ y a +4.721 σ .

Se utiliza el valor del rango intercuartil dado que es una medida robusta que no se afecta por la presencia de valores extremos, a diferencia de la desviación estándar o la dispersión (rango). Los límites interno y externo se definen de la siguiente manera:

Diferencia intercuartil	DI = C75 - C25
Limite interno inferior	Lli = C25 - 1.5x Dl
Limite interno superior	$LIs = C75 + 1.5 \ x DI$
Limite externo inferior	LEi = C25 - 3.0 x Dl
Limite externo superior	$LEs = C75 + 3.0 \times D_{0}$

Para identificar las observaciones se puede realizar un "list", estableciendo los puntos de corte calculados para los valores de los puntos de corte. En el ejemplo anterior:

St	ata resi	ults					X
. list	folio 1	morf if morf	=1.8325,	table (clear		
	folio	morf					
11.	122	39.22					
26.	109						
36.	124						
45.	127						
52.	53	1.91					
59.	75	39.4					
62.	14						
75.	132	39.165					
84.	33	39.34					
101.	78	39.44					
102.	34	39.285					
118.	84						
125.	24	77					
131.	51	1.84					
141.	58	1.855					

si existen otras variables con las cuales podamos comparar estos valores, es decir con los cuales la morfología se pudiera correlacionar, sería adecuado analizarlos y evaluar si esos datos que en la variable de morfología son altos, en la otra variable también son altos.

Es importante tomar nota y evaluar el impacto de estas observaciones en las fases subsecuentes del análisis.

Gráfico de caja (boxplots)

Graph box variable

Este tipo de gráfico es una representación simple de la información, que indica:

- 1. la localización del centro de los datos
- 2. la dispersión
- 3. la simetría
- 4. la extensión de los extremos (colas de la distribución)
- 5. la existencia de valores aberrantes (outliers)

La sencillez de este gráfico lo convierte en un buen instrumento para realizar comparaciones entre diferentes categorías, por ejemplo, entre densidad de la muestra de semen en los hombres del estudio de Tapachula, Chiapas, por días de abstinencia.

Estructura del diagrama de caja:

Х

La ventaja del diagrama de caja, basado en los rangos intercuartiles, es que es resistente al impacto de valores extremos. De hecho, podrían presentarse valores extremos en el 25% de las observaciones y no tener un impacto importante sobre los límites de la caja. En relación con los límites para detectar valores aberrantes, éstos se definen de manera arbitraria. Si se aplicaran a una distribución normal, se esperaría que únicamente el 0.7% de las observaciones tomarán valores superiores a estos punto de corte.

Al graficar la información sobre la densidad de las muestras podemos observar asimetría en los datos, con algunos valores aberrantes, esta información concuerda con la información que nos proporciona un diagrama de letras de la misma variable.

Es de utilidad poder tener el gráfico de caja para comparar la distribución de los valores observados (en este caso se graficaron los valores observados en densidad por días de abstinencia).

En este gráfico se pueden observar diferencias entre los días de abstinencia y la densidad, al parecer los días de abstinencia son un factor para que aumente la densidad de la muestra de semen, a mayor días de abstinencia mayor es la densidad. Y a mayor días de abstinencia mayor dispersión de los datos. Este patrón podría sugerir la necesidad de una transformación, es decir, de re-expresar los valores observados para lograr una dispersión similar, logrando una mejor representación gráfica y datos mas apropiados para los análisis estadísticos tradicionales, como el de varianza y la regresión lineal. En el análisis de varianza se hace la suposición sobre igualdad de varianzas dentro de los diferentes grupos de comparación.

> Normalidad y Transformaciónes

Transformación de variables.

Una de las aplicaciones del análisis exploratorio de datos, es la evaluación de la necesidad de realizar transformaciones. Las principales razones para realizar transformaciones son:

- a) Normalizar las distribuciones
- b) Ganar interpretabilidad
- c) Corregir asimetrías fuertes
- d) Categorías con dispersiones diferentes
- e) Residuales influyentes (detectados en regresión lineal)

Las transformaciones más frecuentemente usadas son:

$\begin{array}{ll} T_p(x)=ax^p+b & \mbox{cuando} \ p\neq 0 \\ T_p(x)=\mbox{clog}+d & \mbox{cuando} \ p=0 \end{array}$

Se trata de transformaciones fuertes y, en general, cambian la forma de los datos; forman parte de un grupo conocido como transformaciones de potencia, que tienen la siguiente forma:

Tp(x)= ax ^p + b	cuando p≠0
Tp(x)= clog + d	cuando p=0

Se requiere que a, b, c, d y p sean números reales; y que a>0 para p>0 y a<0 para p<0. Con estas condiciones se asegura lo siguiente:

- a) Se conserva la secuencia original de orden en los datos
- b) Se conservan los valores asociados a las letras, en el diagrama de letras.
- c) Son funciones continuas
- d) Son funciones sin variaciones bruscas
- e) Se utilizan transformaciones simples, que pueden re-expresarse sin dificultad

Las transformaciones llevan la información a escalas que no resultan familiares por lo que, en general, se pierde interpretación. Los problemas surgen principalmente en el área de la interpretación y no tanto en la de análisis. Por las razones anteriores, solo se deben transformar los datos cuando:

- a) Existe una dispersión muy amplia en los datos. Si la relación entre el valor menor y el mayor es superior a 20, es probable que la transformación tenga un buen efecto.
- b) Se encuentran residuales con valores grandes

c) Existen asimetrías importantes

Entre los usos que se pueden hacer de las transformaciones, está el de lograr "normalidad", es decir, que los datos se distribuyan de acuerdo con la distribución normal. Para evaluar en forma inicial si las observaciones se apegan a esta distribución, se mencionaron anteriormente los resultados que se obtienen del diagrama de letras. En este gráfico, si la distribución se apega a la normalidad, se esperaría que los valores de la pseudosigma fuesen constantes en las estimaciones asociadas a las diferentes letras.

A continuación se presenta el diagrama de letras asociado a los datos de espermatobioscopías en los hombres del estudio de Tapachula, Chiapas para la variable **volumen**.

	Stata re	esults					X
. lv	volumen						
#	144		volumen				
М	72.5		1.5		spread	pseudosigma	
F	36.5	1.025	1.65	2.275	1.25	.9291277	
Е	18.5	.85	1.85	2.85	2	.8724843	
D	9.5	.6	2.1125	3.625	3.025	.9911818	
С	5	.45	2.225	4	3.55	.9607234	
В	3	.3	2.35	4.4	4.1	.982601	
A	2	.15	2.375	4.6	4.45	.9793717	
Z	1.5	.125	2.375	4.625	4.5	.9354966	
	1	.1	2.375	4.65	4.55	.8787322	
					# below	# above	
inner	fence	85		4.15	0	4	
outer	fence	-2.725		6.025	0	0	

Se puede apreciar que la pseudosigma varía de, lo .9291277 a .8787322 lo que sugiere que no se apega a una distribución normal.

Existen otros métodos para evaluar la normalidad; probablemente el más utilizado es el gráfico de la variable original, en relación a su transformación como una variable normalizada. De este gráfico se puede obtener información sobre la falta de normalidad y se puede construir graficando la variable original (y) versus la variable transformada ($f[(X_i - \mu]/\sigma)$).

> qnorm nor, title("gráfico de normalidad)

> symplot

Existen otros gráficos de simetría que pueden ser utilizados. La distancia que tiene cada observación de la mediana se ha utilizado como un indicador de simetría. Si la distribución es simétrica se esperaría que los datos se comportaran de manera similar en ambos extremos de la distribución.

Para realizar este gráfico debemos calcular la diferencia entre la mediana y el valor observado. Como valores esperados podemos graficar el valor observado vs. el mismo valor observado. Si la distribución es simétrica todos los valores deben quedar por debajo del valor esperado.

Posición	volumen		mediana	diferencia
	observado	ob	servada	
1.	.1	1.5	1.4	
2.	.15	1.5	1.35	
3.	.3	1.5	1.2	
4.	.4	1.5	1.1	
5.	.45	1.5	1.05	
140.	4	1.5	2.5	
141.	4.25	1.5	2.75	
142.	4.4	1.5	2.9	
143.	4.6	1.5	3.1	
144.	4.65	1.5	3.15	

Los puntos que se grafcican son:

mediana-y vs $y_{i(N+1-1)}$

Si la distribución es simpetrica la distancia entre los puntos que se encuentran por debajo de la mediana es igual a la distancia de los puntos que se encuentran por arriba. La líne sólida refleja el valor esperado.

Otra forma de evaluar normalidad de los datos es mediante pruebas estadísticas de ajuste. En este caso se asume que la distribución es normal y se estima la probabilidad de que los valores observados se deriven de una distribución normal. Este procedimiento tiene la desventaja de que el resultado dependerá del tamaño de muestra. Para muestras grandes, diferencias pequeñas son altamente significativas, para muestras pequeñas diferencias importantes pueden pasar desapercibidas.

Sktest

Un comando para realizar esta prueba es el sktest, esta prueba se basa en la kurtosis (curvatura) y la skewness(simetría) de la variable.

Stata res	sults				X
. sktest morf	morfnor motrapi	. motprog motab	c volumen dens	sid cta_tot	
	Skewness/Ku	urtosis tests f	or Normality		
				joint	
Variable	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2	
+ morf	0 000	0 000		0 0000	
morfnor	0.000	0.000		0.0000	
motrapi	0.000	0.000	34.14	0.0000	
motprog	0.000	0.015	22.68	0.0000	
motabc	0.000	0.028	20.85	0.0000	
volumen	0.000	0.075	17.86	0.0001	
densid	0.000	0.000	57.76	0.0000	
cta_tot	0.000	0.000	33.07	0.0000	

Para las variables de las base de fertil, se obtienen los siguientes valores:

En este caso nosotros rechazamos la hipótesis nula para todas las variables, ninguna de ellas se distribuye normalemente.

> swilk

Otro estadístico para determinar la normalidad de los datos es la prueba de Shapiro –Wilk. En Stata la instrucción es swilk.

ts	X
rfnor motrapi motprog motabc volumen densid cta_tot Shapiro-Wilk W test for normal data	
Obs W V z Prob>z	
139 0.23472 83.430 9.989 0.00000	
136 0.75502 26.215 7.367 0.00000	
118 0.86906 12.422 5.640 0.00000	
139 0.91363 9.416 5.063 0.00000	
139 0.91611 9.145 4.997 0.00000	
144 0.93266 7.566 4.578 0.00000	
139 0.83553 17.930 6.518 0.00000	
139 0.86934 14.244 5.998 0.00000	
118 0.86906 12.422 5.640 0.00000 139 0.91363 9.416 5.063 0.00000 139 0.91611 9.145 4.997 0.00000 144 0.93266 7.566 4.578 0.00000 139 0.83553 17.930 6.518 0.00000 139 0.86934 14.244 5.998 0.00000	

Del mismo ejemplo anterior aplicando esta prueba tenemos:

En este caso, se puede observar que para todas las variables se rechaza la hipótesis de que se ajustan a una distribución normal. Tomando en cuenta que el valor esperado para el estadístico V es de 1.0 se puede observar que la variable morf presenta los valores más extremos y que la variable volumen se acerca más a una distribución normal.

Ladder

Otra manera de encontrar la mejor re-expresión de la variable para normalizarla (corregir simetría) es ensayar diferentes transformaciones y evaluar cual se ajusta mejor a la distribución normal. Stata puede hacer transformaciones a diferentes potencias mediante el comando ladder.

Stata results				X
. ladder volumen				
Transformation	formula	chi2(2)	P(chi2)	
			0 000	
square	volumen^2	53.60	0.000	
raw	volumen	17.86	0.000	
square-root	sqrt(volumen)	1.76	0.415	
log	log(volumen)	27.85	0.000	
reciprocal root	1/sqrt(volumen)		0.000	
reciprocal	1/volumen		0.000	
reciprocal square	1/(volumen^2)		0.000	
reciprocal cube	1/(volumen^3)		0.000	

Aplicando este comando a una de las variables de nuestra base de datos fértil:

Vemos que la transformación mas adecuada que normaliza la variable volumen es la raíz cuadrada.

Entonces debemos generar una variable utilizando una función que es raíz cuadrada (sqrt) sugerida por el comando anterior.

Stata res	ults					X
. sum volumen Variable	Obs	Mean	Std. Dev.	Min	Max	
volumen	144	1.753125	.9404882	.1	4.65	
. gen vol_rc=s	qrt(volume)	1)	raíz cuadrada	a de volume	ית. מיז יי	
. Taber var vo	I_IC IIAII	STOTMACTON	Laiz Cuaulau	a de vorume	.11	
. sum vol_rc Variable	Obs	Mean	Std. Dev.	Min	Max	
vol_rc	144	1.277159	.350489	.3162278	2.156386	

si graficamos la variable las dos variables por medio de barras de frecuencias tenemos que:

Podemos observar cómo la transformación mejora sustancialmente la distribución de la variable.

Algo que podemos concluir de las transformaciones es que:

Se gana simetría.	
Se pierde "interpretabilidad"	
Si la media > mediana	Desviación positiva
Si la media = mediana	Simétrica
Si la media < mediana	Desviación negativa
Cubo: ^3	Reduce asimetría negativa muy fuerte
Cuadrado ^2	Reduce asimetría negativa leve
Raíz cuadrada	Reduce asimetría positiva leve moderada
Logaritmo	Reduce asimetría positiva

Introducción al Modelamiento estadístico

El modelamiento estadístico generalmente es consecuencia de un proyecto en el cual, con anterioridad, se ha planteado una pregunta de investigación y en la cual se pretende buscar una asociación o bien una predicicón.

Este tiene como objetivos principales: determinar la existencia y la magnitud de la asociaicón entre una variable de respuesta con uno o mas factores (variables de exposición), controlando por variables exógenas (variables de control) y/o determinar que factores (variables predictoras) son las que mejor predicen una respuesta.

La evaluación de la respuesta en los estudios epidemiológicos están muy comunmente relacionados con un proceso de Salud-enfermedad y estos difieren de acuerdo al tipo de diseño empleado:

- 1. Prevalencia
- 2. Incidencia (densidad de incidencia)
- 3. Riesgo (Razón de incidencias)
- 4. Probabilidad de sobrevida
- 5. Riesgo instantáneo
- 6. Razones de momios
- 7. Razones de prevalencia

La base de toda investigación epidemiológica antes que cualquier método de análisis estadístico, es el disño de investigación con el cual se recaba la información. Al mismo tiempo que estos determinan el tipo de análisis a realizar y el método estadístico mas apropiado. En los estudios transversales por ejemplo, es común utilizar un análisis de prevalencias aunque también, se pueden obtener Razones de Momios utilizando una regresión logística o razones de prevalencia. Los estudios de Casos y Controles que son los diseños mas comune para evaluar factores de riesgo sobre la probabilidad de presentar o no una enfermedad determinada se utiliza también regresión logística sobre la cual se pueden obtener Razones de Momios.

Por otro lado, en los estudios de cohorte y ensayos clínicos, puede ser posible determinar desde Riesgos de incidencia, razones de riesgos (Riesgos Relativos), tasas de incidencia, análisis estratificado, curvas de sobrevida, utilizando el análisis estadístico apropiado: regresión Poisson, regresión logísitica, Survas de Sobrevida, regresión de Cox, medidas repetidas, etc.

4 Indroducción al análisis comparativo bivariado y multivariado en STATA

La estadística representan una herramienta muy importante para comprender los fenómenos biológicos, y nos permiten:

- 1) Comunicar y describir información en forma estandarizada
- 2) Contestar hipótesis
- 2) Modelar y cuantificar diferentes relaciones entre parámetros.

Sin embargo, es muy importante recordar que su aplicación se basa en una sobre simplificación de los fenómenos biológicos y una serie de suposiciones, sobre el comportamiento de las variables en las que se ha operacionalizado la medición de los fenómenos biológicos.

Análisis bivariado

El análisis bivariado consta de diferentes pruebas para encontrar la asociación entre dos variables simples, la elección de la prueba estadística va a depender del tipo de variable que se examine, es decir, la escala de medición tanto de la variable dependiente como de la independiente, así como de su distribución.

> Tab var1 var2, column all exact

Esta opción del comando tab despliega una tabla de 2 x 2 mostrando además las proporciones por columna para cada una de las categorías. La opción "all exact" es equivalente a especificar "chi2 lrchi2 V gamma taub". S incluyendo prueba exacta de Fisher's. Con la prueba de chi2 podemos evaluar la diferencia de proporciones.

Tablas cc para OR

Esta prueba en STATA se utiliza para evaluar la asociación entre dos variables categóricas (variable que indica caso o no caso y la variable de expuesto o no expuesto), las cuales se pueden graficar en una tabla de 2 x 2. Con ello calcula Razones de Momios y sus intervalos de confianza, además de las fracción atribuible o prevenible entre los expuestos y la fracción atribuible o prevenible poblacional.

Razón de momios instantáneas cci. Puede utilizarse para calcular el OR conociendo el valor de las celdas.

Cc var1 varr2, by(var3) permite probar diferencias entre los OR calculados entre estratos utilizando medias ponderadas. El estadístico utilizado para dicha prueba es la de Mantel -Hanzel.

Sdtest

Esta prueba se utiliza para comparar las varianzas entre dos grupos o categorías (varible continua y una dicotómica). La hipótesisi nula para este estadístico es probar que las varianzas entre ambas categorías son iguales, mediante una prueba de significancia: Valor P.

> ttest

El comando ttest se utiliza para probar la hipótesis nula de que las medias de distribución entre dos grupos son iguales. Al igual que la prueba de diferencia de varianzas, la prueba de diferencia de medias requiere una variable categórica (dicotómica) y una variable continua, dicha variable se espera que tenga una distribución normal entre ambos grupos, que su varianza sea homogénea y que entre las observaciones haya independencia.

Ttest prueba t de student se emplea para muestras pequeñas

$$t = \frac{X - u}{SX}$$

> ANOVA

Análisis de varianza, prueba la hipótesis nula de que no hay diferencias entre los grupos contra la hipótesis alterna de que al menos un grupo es diferente. Esta prueba requiere de varios supuestos para su uso: Las muestras se hayan seleccionado aleatoriamente, que la variable dependiente se distribuya como una variable normal en cada uno de los grupos y que la varianza de la misma sea constante en cada grupo. La prueba ANOVA es una generalización de la prueba t para comparar dos muestras independientes.

$$SST = (k-1)MST = \sum_{i=1}^{k} n_i (Y_i - \overline{Y})^2$$

$$SST = (n-k)MSE = \sum_{i=1}^{k} \sum_{j=1}^{nk} (Y_{ij} - \overline{Y}i)^2$$

La prueba de bonferroni se aplica cuando hay diferencias de medias entre los grupos y su objetivo es establecer la diferencia específica entre grupos y el nivel de significancia.

Kwallis

Prueba la hipótesis de que dos o más muestras probienen de una misma población. Se utiliza para pruebas en las cuales la distribución de la población es no paramétrica, es decir no requiere que las poblaciones estudiadas estén normalmente distribuidas. La prueba de Kruskal-Wallis es una generalización de la prueba de rangos de signos de Wilcoxon para dos muestras (llamada también de Mann-Whitney). Las muestras de tamaño n_j j=1,...,m se combinan en rangos en orden ascendente de magnitud, a cada rango se le asigna su promedio.

>
$$H = \frac{12}{n(n+1)} \sum_{j=1}^{m} \frac{R^2 j}{nj} - 3(n+1)$$

En la fórmula *n* denota el total del tamaño de la muestra y *Rj* la suma de rangos para cada muestra *jth.* La distribución de la muestra H es aproximadamente X^2 con m-1 grados de libertad.

Correlate x1 x2 x3

Esta prueba pretende encontrar la correlación entre dos variables. El estimador puntual que utiliza son las medias y determina los coeficientes de correlación entre ellos. La hipótesis nula para esta prueba es que las variables no están correlacionadas.

Corr despliega una matriz de correlación de Pearson usando solamente observaciones con valores no missing sobre todas las variables especificadas. Adicionando la opción covarianza produce una matriz de varianza-covarianza proveniente de la correlación

pwcorr x1 x2 x3 y, sig

Despliega una matriz de correlaciones de Pearson usando parejas y deleción de valores missing y mostrando probabilidades de t test (de Ho:p = 0) sobre cada correlación.

Spearman x1 x2

Correlación de rangos que se calcula como la correlación de Pearson sólo que estimada sobre sobre los rangos y promedios en cada rango, además calcula la significancia de la correlación. Asume que la variable 1 y la variable 2 son independientes.

> Gráficas de dispersión

Muestra la tendencia de la correlación entre dos variables continuas.

4 Modelos de Regresión:

El análisis de regresión lineal es una herramienta más para el análisis estadístico entre las asociaciones de parámetros, la regresión lineal en Stata ofrece un amplio rango de procedimientos, desde elementales a sofisticados, desde los comandos que realizan regresiones ordinarias de mínimos cuadrados simples y múltiples (OLS) hasta las órdenes que calculan valores predichos, residuos, y estadísticas de diagnóstico como datos influyentes y Cooles D.

Ejemplos de Comandos

Orden	Función
regress yx	Estima la ecuación de la regresión de mínimos cuadrados entre la
	variable y (variable dependiente y la variable X (variable independiente
regress yx if var1 == 3 & var2	Obtiene la regresión estratificando por loa variable 2 cuando esta sea
> 50	mayor que 50 y si var1==3
predict yhat	Genera una nueva variable la cual arbitrariamente la nombra como
	yhat igual al valor predicho de la última regresión
predict e, resid	Genera una nueva variable (Nombrada arbitrariamente <i>e</i> , igual a los
	residuos de la regresión mas reciente.
graph y x, line yhat x	Dibuja un scatterplot (gráfica de puntos) con la línea de regresión
ο	usando la variable <i>y</i> , yhat, y <i>x</i>
twoway (Ifit y x)	
scatter e yhat, twoway box	Dibuja una gráfica de los residuos contra los valores predichos usando la
yline (0)	variable <i>e</i> y yhat.
regress y $x_1 x_2 x_3$	Estima una regresión lineal múltiple con tres predictores $x_1 x_2 y x_3$.
regress y x1 x2 x3, robust	Calcula estimados robustos de errors estándar (Huber/White).
regress y x1 x2 x3, beta	Estima una regresión múltiple y muestra los coeficientes de la regresión
	en forma estanadarizada (coeficientes) sobre una tabla de resultados.
correlate x ₁ x ₂ x ₃ y	Despliega una matriz de correlación de Pearson usando solamente
	observaciones con valores no missing sobre todas las variables
	especificadas. Adicionando la opción covarianza produce una matriz
	de varianza-covarianza proveniente de la correlación
pwcorr x1 x2 x3 y, sig	Despliega una matriz de correlaciones de Pearson usando parejas
	deleción de valores missing y mostrando probabilidades de t test (de
	Ho:p = 0) sobre cada correlación.
graph matrix $x_1 x_2 x_3 y$, half	Dibuja una matríz de scatterplot s. Como sus listas de variables son las
	mismas, este ejemplo produce una matriz de scatterplots teniendo la
	misma organización como la matriz de correlación producida por el
	comando pwcorr.

test x1 x2	Estima una prueba F de la hipótesis nula que los coeficientes sobre X_1 y
	X_2 ambos son igual a cero, sobre el modelo de regresión más reciente.
sw regress yx1 x2 x3, pr(05)	Estima paso a paso un modelo de regresión usando backward (hacia
	atrás o eliminando) bajo predictores señalados que resultan
	significativos a un nivel de 0.05. O Forward (hacia delante) parte del
	modelos más simple utilizando los predictores señalados hasta el mas
	complicado tomando el mismo criterio de selección de predictores que
	el backward. El vlor de P, puede ser cambiante.

Por ejemplo, si analizamos el efecto del plomo sobre el peso al nacer:

Hipótesis: Las altas concentraciones de plomo en sangre en las mujeres embarazadas están relacionadas con una disminución del peso al nacer del recién nacido (RN).

Evento de estudio: peso del RN medido en gramos al momento del parto.Exposición: Concentraciones de plomo en sangre en las mujeres embarazadas antes del parto.Covariables: Edad gestacional, perímetro cefálico, talla de la madre, lactancia previa, fuma y otras.

En este estudio los investigadores están interesados en modelar el efecto del plomo sobre el peso al nacer por exposición a plomo durante el embarazo. En este caso la operacionalización de la variable independiente – la exposición a plomo- se hizo mediante la medición de plomo en sangre durante el embarazo en diferentes etapas del mismo (cada 3 meses) y 1 mes después del parto. La operacionalización de la variable dependiente – la medición del efecto (Peso al nacer) – se hizo mediante la evaluación del pediatra sobre el RN, dando como resultado la medición del peso en Kilogramos.

En este estudio es necesario entonces resumir y entender la información recolectada en este estudio (estudio de cohorte) mediante un modelo estadístico. Para esto necesitamos una representación sobre una ecuación matemática que nos permita modelar dicho efecto.

El modelo estadístico se debe ajustar a la siguiente ecuación:

Peso del recién naciodo = α + exposición a plomo * efecto

donde:

 y_i = peso al nacer

 α = es la media del peso al nacer

 $\beta x = \exp osición a plomo$

Utilizando la base da datos pesorn:

Ejemplo de regresión lineal simple.

1.- Primero deberá seguir los pasos necesarios para conocer la base de datos, explorarla, detectar valores aberrantes u outliers.

2.- proceda a realizar un análisis univariado para conocer el comportamiento de las principales variables, si es necesario transformar la variable dependiente, hágalo.

3.- Ahora puede realizar el análisis bivariado, conozca la relación simple entre la variable dependiente y la independiente, además la relación entre las otras covariables, una por una. Con esto tendrá una idea de que variables pueden estar influyendo en la relación entre el peso al nacer y la exposición a plomo. Asegúrese de que las covariables no estén correlacionadas entre sí, pues podrían llevarlo a resultados erróneos.

Abriendo la base de datos pesorn.dta

Antes que nada debo empezar con la limpieza de la base, como conozco cuales son las variables por las cuales debo iniciar el análisis iniciaré con ellas explorándolas.

. sum peso_rn	talla_rn	pecef_rn edg	ges_rn			
Variable	Obs	Mean	Std. Dev.	Min	Max	
peso_rn talla_rn pecef_rn edges_rn	274 274 274 274 274	3.080109 49.85949 34.72993 39.01095	.4750916 2.472442 5.817013 5.488906	1 35 28 27	4.525 56 99.9 99	

Observamos que las variables de percef_rn y edges_rn tienen valores de 99.9 y 99 Para un niño recién nacido estos valores no son posibles. Esto indica que tengo aun valores en los cuales las participantes no contestaron y a ellos se les aplicó un 99.

. sum pecef_r	n if pecef_	_rn<99			
Variable	Obs	Mean	Std. Dev.	Min	Max
pecef_rn	272	34.25074	1.585148	28	43
. sum edges_	rn if edges	s_rn<99			
Variable	Obs	Mean	Std. Dev.	Min	Max
edges_rn	272	38.56985	1.896465	27	42

Vemos que al no incluir el valor 99 la media de ambas variables disminuye y el numero de observaciones también disminuye.
Podemos realizar algunas gráficas en las que veamos la correlación y evaluemos si existen o no puntos que pueden ser erróneos.

> Aplicando gráficas de dispersión

Esperaríamos que la relación fuera lineal que, es decir que todos los puntos quedaran alineados siguiendo una línea recta, los puntos que salen de la nube de puntos son los que debemos explorar. ¿Cómo podemos hacer esto? Con list o browse.

El primer punto corresponde a una edad gestacional de 127 semanas y tiene un peso de 1 Kg., lo que es realmente bajo, sin embargo para su edad gestacional, lo podríamos creer, a menos que al verificar los cuestionarios estos no fueran los reales.

El siguiente punto que sale de la recta es el que corresponde a una edad gestacional de 33 semanas y peso de 1.175, el siguiente corresponde a una edad gestacional de 27 y un pese de 2.5. Estos últimos dos puntos hay que evaluarlos o tomarlos en cuenta en el análisis.

. scatter peso_rn talla_rn

Se correlacionan bien,

¿Como podemos evaluar que edad gestacional este bien determinada?: si conociéramos la fecha de ultima regla y la fecha de nacimiento del niño podríamos calcular una edad gestacional nosotros mismos.

Evaluaremos si tenemos puntos outliers:

Por ejemplo:

. lv peso_rn

# 2	274	Peso del	ninio(a) a	l nacer		
M F D C B A Z Y	137.5 69 35 18 9.5 5 3 2 1.5 1	2.812.62.42.11251.91.91.1751.08751	$\begin{array}{r} 3.1\\ 3.08\\ 3.1\\ 3.085\\ 3.00625\\ 3\\ 3.05\\ 2.825\\ 2.79375\\ 2.7625\end{array}$	$\begin{array}{c} 3.35\\ 3.6\\ 3.77\\ 3.9\\ 4.1\\ 4.2\\ 4.475\\ 4.5\\ 4.525\end{array}$	spread .54 1 1.37 1.7875 2.2 2.3 3.3 3.4125 3.525	pseudosigma .4008705 .4371645 .4509953 .4876353 .5189138 .4920915 .6579634 .6484396 .6288308
inner outer	fence fence	2 1.19		4.16 4.97	# below 6 2	# above 3 0

Los puntos que salen de los límites inferior internos y los límites exteriores externos son los que hay que evaluar.

. list folio talla_rn peso_rn edges_rn pecef_rn if peso_rn>=4.16 & peso_rn<.

	folio	talla_rn	peso_rn	edges_rn	pecef_rn
152.	217	53	4.475	39	37
254.	334	53	4.2	38	37
283.	363	54	4.525	39	38

. list folio talla_rn peso_rn edges_rn pecef_rn if peso_rn<=2

	folio	talla_rn	peso_rn	edges_rn	pecef_rn
43.	65	46	1.9	36	33
212.	287	45	1.9	33	30
223.	301	41	2	34	32
228.	306	47	1.9	36	32
241.	319	39	1.175	33	28
360.	444	35	1	27	36

Todas nuestras variables son continuas. Los valores que aquí parecen ser aberrantes debemos evaluarlos según nuestro criterio si no revisar que en el cuestionario correspondan y si no verificarlos con la participante.

Debemos también evaluar si la variable de plomo en sangre presenta o no discrepancias.

. sum pb_3 pb_6 pb_8

 Variab	le		Obs		Mean	Std.	Dev.		Min		Max
 pb_3 pb_6 pb_8	+	184 183 181	.2 .1 .1	08188 668055 790993	7.1 5.2 3.3	934007 579198 3123257		.03542 .0274 .0296		1.0869 3.0782 2.6329	

. lv pb_3 pb_6 pb_8

#	167	pb_en	plasma et	.3		
M F D C B A Z	84 42.5 21.5 11 6 3.5 2 1.5	.09922 .0753 .065 .0557 .0512 .0466 .0465	.134 .16616 .214775 .3097 .3772 .43915 .48365 .5000509	.2331 .35425 .5544 .6987 .8271 .9207 .9536018	spread .13388 .27895 .4894 .643 .7759 .8741 .9071018	pseudosigma .1001744 .1220124 .1605564 .1759903 .1868296 .1877487 .184468
inner outer	1 fence fence	1016 30242	.5164518	.9865037 .43392 .63474	.9401037 # below 0	.1780867 # above 15 7

#	167	pb_en	sangre et	.6		
М	84		.1085		spread	pseudosigma
F	42.5	.0778	.1206	.1634	.0856	.0640494
Е	21.5	.06245	.1424	.22235	.1599	.0699401
D	11	.0519	.18165	.3114	.2595	.0851336
С	6	.0504	.23325	.4161	.3657	.1000928
В	3.5	.04375	.30175	.55975	.516	.1242481
А	2	.0364	.3520058	.6676117	.6312117	.1355785
Z	1.5	.0319	.9524029	1.872906	1.841006	.3743865
	1	.0274	1.5528	3.0782	3.0508	.5779225
					# below	# above
inner	fence	0506		.2918	0	11
outer	fence	179		.4202	0	5

#	167	pb_en	n plasma et.	. 8		
M F D C B A Z	$ \begin{array}{r} 84 \\ 42.5 \\ 21.5 \\ 11 \\ 6 \\ 3.5 \\ 2 \\ 1.5 \\ 1 \\ 1.5 \\ 1 \end{array} $	07915 06365 0498 0452 04085 0356 0326 0296	$\begin{array}{c} .1155\\.1263\\.1453194\\.1882\\.2269\\.63665\\1.24485\\1.28805\\1.33125\end{array}$.17345 .2269887 .3266 .4086 1.23245 2.4541 2.5435 2.6329	spread .0943 .1633387 .2768 .3634 1.1916 2.4185 2.5109 2.6033	pseudosigma .0705591 .0714442 .0908092 .0994633 .2869264 .5194718 .510616 .4931512
inner outer	fence fence	0623 20375		.3149 .45635	# below 0 0	# above 11 4

Existen valores que parecen outliers, los observamos y algunos de ellos corresponden en etapa al otro valor extremo en la etapa anterior y/o posterior.

Con lo anterior evaluamos normalidad de las variables y además detectamos valores alejados de la nube de puntos. Si no se realiza alguna corrección en los mismos porque se consideren plausibles, podemos evaluar si la distribución se asemeja a una distribución normal:

.qnorm peso_rn

. sktest peso_rn

	for Normality	urtosis tests :	Skewness/K	
joint Prob>chi2	adj chi2(2)	Pr(Kurtosis)	Pr(Skewness)	Variable
0.0000	20.15	0.000	0.004	peso_rn

La variable aunque gráficamente muestra apego a la línea normal en la prueba estadística rechazamos la hipótesis de que peso_rn tiene una distribución normal.

. ladder peso_rn

Transformation	n formula	chi2(2)	P(chi2)
cube square raw square-root log reciprocal roo reciprocal reciprocal squ	peso_rn^3 peso_rn^2 peso_rn sqrt(peso_rn) log(peso_rn) t 1/sqrt(peso_rn) 1/peso_rn are 1/(peso_rn^2)	41.99 12.94 20.15 52.27	$\begin{array}{c} 0.000\\ 0.002\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$
reciprocal cub	be 1/(peso_rn^3)	•	0.000

¿Qué pasa aquí? Tendríamos que excluir los valores extremos?

Tenemos que decidir que variables podrían ser predictoras del peso al nacer y cuales potenciales confusoras para poderlas incluir en el modelo final, para esto debemos de realizar el análisis bivariado.

Sabemos que edad gestacional peso y talla deben tener una correlación ya que pensemos que a mayor edad gestacional el niño será mas grande y viceversa. Para esto realizaremos una prueba de correlación entre ellas.

La correlación es altamente significativa.

Aplicando pwcorr

. pwcorr peso_rn talla_rn pecef_rn edges_rn pb_3 pb_6 pb_8,sig

	peso_rn	talla_rn	pecef_rn	edges_rn	pb_3 pb_6	pb_8	
peso_rn	1.0000						
talla_rn	0.7701 0.0000	1.0000					
pecef_rn	0.0965 0.1110	0.1052 0.0823	1.0000				
edges_rn	0.5953 0.0000	0.5219 0.0000	0.1413 0.0198	1.0000			
pb_3	-0.1334 0.0734	-0.0898 0.2293	-0.0428 0.5672	-0.1210 0.1065	1.0000		
pb_6	-0.1535 0.0385	-0.0962 0.1964	-0.0184 0.8056	-0.0397 0.5968	0.4652 0.0000	1.0000	
pb_8	-0.0105 0.8885	0.0453 0.5461	-0.0167 0.8240	0.0345 0.6471	0.1752 0.0219	0.5263 0.0000	1.0000

Como habíamos visto, pwcorr despliega una matriz de correlaciones de Pearson usando parejas y eliminando los valores missing. Muestra probabilidades de t test (de Ho:p = 0) sobre cada correlación. Las correlaciones pueden tomar valores de 0 a 1 tanto en forma positiva como negativa, en nuestro caso vemos que plomo en sangre (pb_) en todas las etapas se correlaciona en forma negativa con el peso al

nacer. Sin embargo la correlación peso_rn - pb_8 no es significativa. Perímetro cefálico tampoco muestra una correlación significativa con el peso al nacer.

Podemos también evaluar otras variables que podrían ser confusoras:

. sum peso_m3 emba cipa_m6 edad_m n_hijos hijos_bp hijos_pm hijos_m abortos presis3 $\ensuremath{\mathsf{presis3}}$

Variable	Obs	Mean	Std. Dev.	Min	Max
peso_m3	264	61.20758	10.4896	42	105
talla_m	458	155.7707	6.209847	140	192
emba	462	1.761905	1.13685	0	6
сіра_тб	270	34.9363	3.256052	23.6	47.4
edad_m	463	27.15119	5.294655	14	43
n_hijos	456	.8135965	.9128577	0	8
hijos_bp	407	.0614251	.2870968	0	3
hijos_pm	406	.0763547	.2838579	0	2
hijos_m	407	.02457	.1550012	0	1
abortos	418	.2822967	.601136	0	4
sexo_rn	274	1.478102	.5004343	1	2
presis3	256	110.293	10.58727	70	132
predia3	256	70.03516	8.561813	40	90

y así para todas las etapas..

Aplicando pcorr

. pcorr peso_rn peso_m3 emba cipa_m6 edad_m n_hijos hijos_bp hijos_pm hijos_m abortos presis3 predia3 talla_m (obs=200)

Partial correlation of peso_rn with

Variable	Corr.	Sig.
peso_m3 emba cipa_m6 edad_m n_hijos hijos_bp hijos_pm hijos_m abortos presis3 predia3	-0.0389 0.1793 0.1411 0.1402 -0.1129 -0.0255 -0.0644 0.0371 -0.1861 0.113 -0.0973	0.596 0.014 0.053 0.055 0.123 0.728 0.380 0.613 0.011 0.126 0.184
talla_m	0.0528	0.4/2

pcorr permite realizar una prueba de correlaciones parciales únicamente entre la variable dependiente contra las variables independientes. No despliega la matriz de correlación de todas las variables. Únicamente las variables emba y abortos resultan en correlación significativa, aunque cipa_m6 y edad_m quedan en el valor límite. Para analizar la variable como sexo del RN podemos aplicar una prueba t.

Aplicando ttest

. ttest peso_rn, by(sexo_rn)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf	. Interval]
1 2	143 131	3.098566 3.059962	.0422772	.5055622 .4404829	3.014992 2.983824	3.182141 3.1361
combined	274	3.080109	.0287013	.4750916	3.023605	3.136614
diff		.0386046	.0575157		074628	.1518371

Degrees of freedom: 272

```
Ho: mean(1) - mean(2) = diff = 0
```

Ha: diff < 0	Ha: diff ~= 0	Ha: diff > 0
t = 0.6712	t = 0.6712	t = 0.6712
P < t = 0.7487	P > t = 0.5027	P > t = 0.2513

El comando ttest se utiliza para probar la hipótesis nula de que las medias de distribución entre dos grupos son iguales. En este caso nosotros no rechazamos la hipótesis nula, es decir, no existen diferencias en las medias de peso al nacer en los niños con respecto a las niñas, ya que el valor p de significancia es 0.5027 (p>0.05). También podemos apreciar que las medias entre niños y niñas son 3.098 y 3.05 respectivamente.

O utilizar una prueba no paramétrica en el caso de que no conociéramos la distribución de la variable talla_rn de acuerdo al sexo del recién nacido.

Aplicando Kwallis

. kwallis talla_rn,by(sexo_rn)
Test: Equality of populations (Kruskal-Wallis test)

Al igual que la prueba t a través de la prueba de kwallis comprobamos que en no hay diferencias en cuanto a la media del peso del recién nacido por sexo (p=0.4883).

El análisis bivariado también puede hacerse probando por medio de modelos lineales simples, por ejemplo:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Source	SS	df		MS		Number of obs $F(1)$ 170)	=	181
Model Residual	.548885381 30.2945436	1 179	.548	885381 924326		Prob > F R-squared	= =	0.0734 0.0178
Total	30.8434289	180	.171	352383		Root MSE	=	.41139
peso_rn	Coef.	Std.	Err.	t	P> t	[95% Conf.	Int	terval]
pb_3 _cons	2876684 3.185634	.1597	7375 1503	-1.80 70.74	0.073 0.000	6028793 3.096776	.(3	0275426 .274492
. reg peso_r	n pb_6							
Source	SS	df		MS		Number of obs $E(1)$ 180)	=	182
Model Residual	.739101466 30.61112	1 180	.739 .170	101466 061778		Prob > F R-squared	=	0.0385
Total	31.3502215	181	.173	205644		Root MSE	=	.41239
peso_rn	Coef.	Std.	Err.	 t	P> t	[95% Conf.	Int	terval]

. reg peso_rn pb_3

-----+----+

como sabemos el comando regress o reg estima la ecuación de la regresión de mínimos cuadrados entre
la variable y (variable dependiente y la variable X (variable independiente), por lo tanto mediante este
podemos ajustar la siguiente ecuación, tomado pb_6 como la principal variable independiente.

 pb_6
 -.2470947
 .1185263
 -2.08
 0.039
 -.4809744
 -.0132149

 _cons
 3.156136
 .0364194
 86.66
 0.000
 3.084272
 3.228

$y_i = \alpha + \beta x$

Peso al nacer = α + plomo en sangre et 6 * efecto Peso al nacer = 3.156 – 0.2471plomo en sangre et.6

3.156 es la media esperada del peso al nacer cuando X=0

0.2471 representa el coeficiente β , es decir la medida del efecto, la unidad de cambio.

Podríamos interpretar que por cada μ g/dl de plomo que aumenta en plasma de la madre, disminuye en 0.25 kg el peso al nacer, asumiendo que no existen otros confusores.

El valor p asociado al coeficiente indica que la asociación observada es diferente a la magnitud de asociación que se podría observar simplemente por el azar.

Esto se puede hacer con las demás covariables.

Es útil probar una reexpresión de la variable independiente (variable continua) en forma de categorías que me ayuden a evaluar si los grupos mas altos podrían predecir mejor la disminución del peso al nacer.

80

Dado que no existen datos en la literatura de cómo podríamos agrupar las concentraciones de plomo en sangre, nosotros agruparemos la variable en cuartiles. Mediante esta categorización dividiremos la variable en cuatro grupos que contengan el 25 % de las observaciones cada uno:

. sum	pb_6,d	pb_en plasma	et.6	
1% 5%	Percentiles .0364 .0517	Smallest .0274 .0364		
10%	.0598	.0425	Obs	183
25%	.0807	.045	Sum of Wgt.	183
50%	.1098	Largest	Mean Std. Dev.	.1668055
75%	.1697	.5963		
90% 95% 99%	.2789 .4161 1.357228	.6676117 1.357228 3.0782	Variance Skewness Kurtosis	.0665226 8.596641 92.44176

en un Segundo paso generaremos las variables indicadoras. Para este ejemplo se requiere de 4 variables indicadoras (x1, x2, x3, x4) que indican la presencia o la ausencia en un grupo en particular .

. gen qpb6=pb_6

(281 missing values generated)

. recode qpb_6 min/0.0807=1 0.0810/.1098=2 0.1099/.1697=3 .1698/max=4

(183 changes made)

. tab qpb_6 qpb_6	Freq.	Percent	Cum.
1 2 3 4	46 46 47 44	$25.14 \\ 25.14 \\ 25.68 \\ 24.04$	25.14 50.27 75.96 100.00
Total	183	100.00	

Una variable indicadora significa que contiene 1 cuando pertenece a ese grupo y = cuando no pertenece.

Podemos realizar una prueba ANOVA de una sola vía para ver si existe alguna diferencia de peso al nacer por categoría de plomo en sangre.

Aplicando ANOVA (oneway)

. oneway peso_rn qpbpl6, tab bonferroni

	Summary of	Peso del nini	io(a) al
		nacer	
dībp_6	Mean	Std. Dev.	Freq.
1	3.1696739	.32804708	46
2	3.1919565	.41835056	46

	3 4	3.0646 3.02943	739 .4 318	4268572 .472102	5 2	46 44				
Tota	al	3.1148	526 .4	4161798	2	182				
Source	2		Analy: SS	sis of ' d:	Variance E M	e IS		F	Prob > 1	F
Between gr Within gr	roups coups	.84 30	4859664! .5016249	5 : 9 17	3 .282 3 .171	865548 357443	1	.65	0.179	4
Total		31	.350221	5 18	1.173	205644				
Bartlett's	s test	for equ	ual var:	iances:	chi2(3	;) =	5.8611	Prob	>chi2 =	0.119
			Compari	son of (Bon:	Peso del Eerroni)	l ninic	o(a) al	nacer	py dbp_	6
Row Mean- Col Mean		1		2	3					
2	.0)22283 1.000								
3		105 1.000	127: 0.8	283 852						
4	1	40242 0.659	162 0.3	525 - 386	.035242 1.000					

Dado que esta prueba nos dice si hay o no diferencia entre los grupos con respecto a la varianza de cada uno de ellos, nosotros necesitamos valores grandes de F para rechazar la hipótesis nula de que los grupos son iguales. En este caso no rechazamos la hipótesis nula.

El tab nos muestra como está la media de los pesos de los niños al nacer por cada una de las categorías. Si tomamos como referencia el primer cuartil para comparar los demás grupos las diferencias entre los cuartiles serían:

Q1-Q1=0 Q1-Q2=-0.0223 Q1-Q3=0.105 Q1-Q4=0.1402

¿Cómo representaríamos gráficamente estas diferencias de medias?

¿Y cómo podríamos expresar en esto en un modelo de regresión lineal?

Aplicando regresión lineal simple

. tab qpb_6,gen(qpb6)

. reg peso_rn qpb6_2 qpb6_3 qpb6_4

Source Model Residual	SS .848596645 30.5016249	df 3 .28 178 .17	MS 2865548 1357443		Number of obs F(3, 178) Prob > F R-squared	$= 182 \\ = 1.65 \\ = 0.1794 \\ = 0.0271 \\ = 0.0107$
Total	31.3502215	181 .17	3205644		Root MSE	= .41395
peso_rn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
qpb6_2 qpb6_3 qpb6_4 _cons	.0222826 105 1402421 3.169674	.0863153 .0863153 .0872906 .0610341	0.26 -1.22 -1.61 51.93	0.797 0.225 0.110 0.000	1480503 2753329 3124997 3.04923	.1926155 .0653329 .0320155 3.290117

En el modelo anterior dejamos de referencia la primera categoría, cuando las otras tres variables tomen el valor de cero, entonces la constante corresponde a la media estimada para el primer cuartil. Vemos que los intervalos de confianza se entrecruzan entre cada categoría, los valores de p no son sinificativos. Podemos realizar una prueba para evaluar si existe diferencia entre los tres grupos:

. lincom qpbpl6_2- qpbpl6_3

(1) qpbpl6_2 - qpbpl6_3 = 0.0

peso_rn	Coef.	Std. Err.	t	 P> t	[95% Conf.	Interval]
(1)	.1272826	.0863153	1.47	0.142	0430503	.2976155

No hay diferencias.

Nota: hacer la prueba para las demás categorías.

Podemos seguir evaluando:

. reg peso_rn qpbpl6_3 qpbpl6_4

Source	SS SS	df	MS		Number of obs $F(2) = 170$	=	182
Model Residual Total	.8371768 30.5130447 31.3502215	2 .7 179 .170 181 .173	4185884 0463937 3205644		Prob > F R-squared Adj R-squared Root MSE	= = = =	0.0887 0.0267 0.0158 .41287
peso_rn	Coef.	Std. Err.	t	P> t	[95% Conf.	Int	erval]
qpb6_3 qpb6_4 _cons	1161413 1513834 3.180815	.0745561 .0756773 .043045	-1.56 -2.00 73.90	0.121 0.047 0.000	2632632 3007178 3.095874	.0 3.	309806 002049 265756

. reg peso_rn qpbpl6_4

Source	SS	df 	MS		Number of obs $F(1)$ 180)	= 182 = 2.46
Model Residual	.423520174 30.9267013	1 .423 180 .171	520174 815007		Prob > F R-squared Adi R-squared	= 0.1182 = 0.0132 = 0.0080
Total	31.3502215	181 .173	205644		Root MSE	= .41451
peso_rn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
qpb6_4 _cons	1126696 3.142101	.071763 .0352851	-1.57 89.05	0.118 0.000	2542745 3.072476	.0289353 3.21172

. reg peso_rn qpbpl6_1 qpbpl6_2

Source	SS S	df	MS		Number of obs $E(2)$ 170)	=	182
Model Residual	.820665332 30.5295562	2 .41 179 .1	0332666		Prob > F R-squared	=	0.0931
Total	31.3502215	181 .17	3205644		Root MSE	=	.41298
peso_rn	Coef.	Std. Err.	t	P> t	[95% Conf.	Int	terval]
qpb6_1 qpb6_2 _cons	.1222295 .1445121 3.047444	.0748519 .0748519 .0435324	1.63 1.93 70.00	0.104 0.055 0.000	0254763 0031936 2.961542	3	2699352 2922178 .133347

. reg peso_rn qpbpl6_1 qpbpl6_2 qpbpl6_3

Source	SS	df	MS		Number of obs $E(2)$ 179)	=	182
Model Residual	.848596645 30.5016249	3 .28 178 .17	2865548 1357443		Prob > F R-squared	=	0.1794
Total	31.3502215	181 .17	3205644		Root MSE	=	.41395
peso_rn	Coef.	Std. Err.	t	P> t	[95% Conf.	Int	[erval]
qpb6_1 qpb6_2 qpb6_3 _cons	.1402421 .1625247 .0352421 3.029432	.0872906 .0872906 .0872906 .0624058	1.61 1.86 0.40 48.54	0.110 0.064 0.687 0.000	0320155 0097329 1370155 2.906281		3124997 3347823 2074997 .152582

. reg peso_rn qpbpl6_1

Source	SS	df	MS		Number of obs $\mathbf{F}(1) = 180$	= 182
Model Residual	.184939669 31.1652818	1 .184 180 .173	939669 140455		Prob > F R-squared	= 0.3028 = 0.0059
Total	31.3502215	181 .173	205644		Root MSE	= .4161
peso_rn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
qpb6_1 _cons	.0733504 3.096324	.0709719 .0356804	1.03 86.78	0.303	0666936 3.025918	.2133944 3.166729

¿cómo haríamos esto en stata 8?

Los comandos son los mismos.

Si lo queremos hacer a partir de las ventanas:

Stata/SE 8.0			
The Edit Durfe Date Combine	Charles Han Headaw Hale		
File Edit Prers Data Graphics	Statistics User Window Help		
6 🖬 🖨 🔗 🎟	Summaries, tables, & tests	<u>}</u>	
	Linear regression and related	Linear regression	
🔜 Review 🛛 🗙 🗔 St	Binary outcomes	 Regression diagnostics 	
regress pb_st22 hijos_bp	Ordinal outcomes Count outcomes Categorical outcomes Selection models Generalized linear models (GLM) Nonparametric analysis	Box-Cox regression Errors-in-variables regression Frontier models Truncated regression Constrained linear regression	nentos\Instituto\CLASES\Paqu ;a" :os\Instituto\CLASES\Paquete saved
ren pbplas22 pb_6 ren pbplas21 pb_3 edit save "C:\Documents and regress peso_m pb_3	Time series Multivariate time series Cross-sectional time series	Multiple equation models Censored regression Fractional polynomials Other	Number of obs = 181 F< 1, 179> = 3.24 Prob > F = 0.0734
Variables	Survival analysis Observational/Epi, analysis	179 .16924326 180 .171352383	R-squared = 0.0123 Adj R-squared = 0.0123 Root MSE = .41139
cipa_m3		Ad English A DN	
predia3 pb_st3 pb_3	ANOVA/MANOVA Cluster analysis Other multivariate analysis	td. tpp. t p> 1597375 -1.80 0. .04503 70.74 0.	111 1952 Conf. Interval 073 6028793 .0275426 000 3.096776 3.274492
fe_ppb3	Resampling & simulation	> E	
fuma6	General post-estimation	<u>}</u>	
presis6	Other	•	
predia6 📃 Sta	ita Command	1 A 4	
pb_st6 pb_6 fe_ppb6 hb_oob6			
🐉 Inicio 🛛 🔯 Bandeja d	🔟 stataCV 🔛 Inte	ercoole 🗀 stata8	🜡 Stata/SE 8.0 ES 🦿 🏈 🔏 04:17 p.m.

En el menu de opciones seleccionamos [statisctics] luego nos vamos a la opción[linear regression and relateded] y ahí presionamos [linear regression], en donde nos presentará una ventana en la cual nos pide introducir los datos de las variables sobre las cuales queremos realizar la regresión.

En dicha ventana debemos introducir el nombre de la varaibles dependiente y el nombre de la (las) variable(s) independientes.

Existen otras opciones que se pueden cambiar como por ejemplo el nivel de confianza. Además incluir algunas otras como es dar peso por alguna variable, hacer un análisis estratificado, etc.

F *		
🔜 Stata/SE 8.0		
File Edit Prefs Data G	iraphics Statistics User Window Help	
F B S	• • • • • • • • • • • • • • • • • • •	
🗖 Review 🛛 🔀	regress - Linear regression	
regress pb_st22 hijos_bp 🔺	Main by/if/in Weights Robust SE Advanced	
clear use "C:\Documents and	Dependent variable: Independent variables:	.to\CLASES\Paqu
clear use "C:\Documents and	peso_m pb_3	.CLASES\Paquete
ren pbplas23 pb_8 👘 ren pbplas22 pb_6	0.ma	
ren pbplas21 pb_3 edit	95 Confidence level	
save "C:\Documents and regress peso_rn pb_3		obs = 181 79) = 3.24
		= 0.0734 = 0.0178
Variables 🔀		red = 0.0123
Target: Command Window		41137
presis3		of. Intervall
predia3		
pb_st3		3 .0275426
pp_3 fe_ppb3		J.21 1172
hb_ppb3		
fuma6		
cipa_m6 🧧	Q Q O DK Cancel Submit	
presis6 🦰		-A
predia6	Stata Command	>
pb_st6		
pb_6		
re_ppbb		
un-hhoe		
🦺 Inicio 🔰 🔞 🛚	andeja d 🖻 stataCV 😹 Intercoole 🗁 stata8 🛛 👯 Stata/SE 8.0 ES	🔇 🧥 04:24 p.m.

> Regresión lineal múltiple

Tomando de referencia el artículo de Cossio Et al. Es necesario evaluar un modelo que incluya potenciales confusores de la relación anterior.

En este caso la ecuación anterior cambia por la siguiente:

$$y_i = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \dots + \varepsilon_{ij}$$

Con este modelo se muestra la importancia de los dos niveles de acción necesarios para utilizar los métodos estadísticos ya que hay que evaluar la hipótesis tanto desde el punto de vista estadístico como desde el punto de vista conceptual.

Aplicando Stata, nosotros tenemos que traducir esa ecuación en aplicación de comandos.

Continuación del ejercicio de Peso al nacer y plomo en sangre...

4.- Ahora sí, realice el modelo con las variables que mejor predicen la relación lineal. Tome en cuenta los criterios correspondientes.

. reg peso_rn edges_rn pb_6 peso_m3 emba cipa_m6

Source	SS	df	MS		Number of obs $F(5)$ 164)	= 170 = 14 57
Model Residual	8.89872814 20.0330005	5 1.77 164 .122	7974563 2152442		Prob > F R-squared	= 0.0000 = 0.3076 = 0.2865
Total	28.9317286	169 .17	7119366		Root MSE	= .3495
peso_rn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
pb_6 edges_rn peso_m3 emba cipa_m6 _cons	2064495 .1286125 003908 .0620872 .0389931 -3.108531	.1011997 .0188388 .0046138 .0251905 .0158391 .7824896	-2.04 6.83 -0.85 2.46 2.46 -3.97	0.043 0.000 0.398 0.015 0.015 0.000	4062718 .0914146 0130182 .0123477 .0077182 -4.653583	0066273 .1658104 .0052022 .1118267 .070268 -1.563478

👪 Stata/SE 8.0 File Edit Prefs Data Graphics Statistics User Window Help 👁 📰 📰 🦉 🔲 🖸 🚳 🔇 😂 日 🕘 31 × regress - Linear regression Review regress pb_st22 hijos_bp 🔥 Main by/if/in Weights Robust SE Advanced cler clear use "C:\Documents and to\CLASES\Paqu Dependent variable: Independent variables: clear edges_rn pb_6 peso_m3 emba cipa_m6 peso_m use "C:\Documents and CLASES\Paquete ren pbplas23 pb_8 ren pbplas22 pb_6 Output ren pbplas21 pb_3 edit Normalized beta coefficients 95 🗧 Confidence level save "C:\Documents and n hs regress peso in pb 3 × 🔜 Variables Target: Independent variable cipa_m3 presis3 Interval] nf. predia3 .0275426 3.274492 pb_st3 3 pb_3 fe_ppb3 hb_ppb3 fuma6 cipa_m6 00 0K Cancel Submit presis6 🔜 Stata Command predia6 pb_st6 pb_6 fe_ppb6 hb_ppb6 ES 🖞 🔇 🧎 05:30 p.m. 🛃 Inicio 🕑 Bandeja d. . StataCV_... Intercoole... 🚞 stata8 🔣 Stata/SE 8.0

En Stata 8 lo podríamos hacer de la siguiente manera:

¿cómo interpretamos estos resultados?

Peso al nacer= -3.108531 -0.2064495pb_6+ 0.1286125edges_rn -.003908peso_m3 + 0.0620872emba + 0.0389931cipa_m6

Podríamos interpretar que por cada µg/dl de plomo que aumenta en plasma de la madre, disminuye en 0.2065 kg el peso al nacer, asumiendo que el resto de las covariables permanecen constantes.

En el caso de las variables indicadoras, ¿cómo sería la interpretación?

Cuando la variable indicadora es 1, ej. fumar durante el embarazo se espera una reducción en el peso al nacer de x kgs. Cuando la varible indicadora toma el valor de cero -las mujeres no fumaron durante el embarazo- el valor esperado es el de la media.

El valor p asociado a los coeficientes, indica que la asociación observada es diferente a la magnitud de asociación que se podría observar simplemente por el azar.

Coeficiente de determinación R2

En nuestro modelo tenemos una R^2 de 0.3076, esto es que nuestro modelo explicar el 30.76 5 de la variabilidad del peso al nacer, el resto queda explicado por variables desconocidas. La raíz cuadrada positiva de R2 es el coeficiente de correlación múltiple de **y** con el conjunto de regresores incluidos en el modelo. En el ejémplo r es 0.5546.

5.- Evalúe el modelo. ¿cumple con los supuestos de la regresión lineal?

verificar los supuestos :

predict residuos, r

para nuestro modelo:

. predict residuo,rstu

(294 missing values generated)

Los residuos son discrepancias entre el valor estimado con el modelo y el valor observado. Los residuos pueden verse como la variabilidad que no puede explicarse mediante el modelo de regresión. También se pueden interpretar como el valor de error. Es por eso que observamos los residuos para saber si se cumplen o no las suposiciones básicas del modelo. En este caso vemos que existen residuos demasiado grandes que aun no ajustan a la línea normal, esos residuos podemos evaluarlos.

sum residuos (ojo, estos residuos son estudentizados)

. sum residuo

Variable	Obs	Mean	Std. Dev.	Min	Max
residuo	170	.0033081	1.016795	-2.356718	4.656434

list if abs(residuos)>2.5 & abs(residuo)<.

. list folio peso_rn pb_6 if abs(residuo)>2.5 & abs(residuo)<.

	folio	peso_rn	pb_6
92.	217	4.475	.1007
158.	363	4.525	.1727

count if abs(residuos)>1.645

```
. count if abs(residuo)>1.645 & residuo<. 16
```

display

```
. display 16/170
.0941176516
```

count if abs(residuos)>1.96

```
. count if abs(residuo)>1.96 & residuo<.
8
```

swilk

```
. swilk residuo
```

	S	Shapiro-Wilk	W test for	normal data	L
Variable	0k	os W	V	Z	Prob>z
residuo	17	70 0.9469	3 6.87	5 4.400	0.00001

Estas pruebas de Shapiro Wilk da información sobre el grado de concordancia entre la gráfica normal y la distribución esperada sobre la línea recta.

La **W** representa los valores de las pruebas Shapiro wilk y la **V** el valor de la prueba. El valor esperado de V para distribuciones normales es de 1. No debo rechazar la hipótesis nula para normalidad.

Dado que los valores observados en la variable independiente y los residuos no son independientes, no se recomienda realizar gráficos diagnósticos utilizando estas variables.

Lo esperado es los gráficos de *ei* contra y*i estimada* es que no exista relación entre los residuos y el valor esperado. Cualquier patrón de dependencia indica problema.

Para el modelo rechazo la hipótesis nula de normalidad.

rvfplot, ylab() xlab()

. rvfplot, ylabel xlabel

Gráfica de los residuos comunes contra el valor estimado de la variable respuesta, para evaluar media cero y varianza constante.

hettest

```
. hettest
Cook-Weisberg test for heteroskedasticity using fitted values of peso_rn
    Ho: Constant variance
        chi2(1) = 0.33
        Prob > chi2 = 0.5635
```

hettest es una prueba de heterocedasticidad. No debería de encontrarse algún patrón de comportamiento, en el ejémplo el valor p es .5635 con lo cual no rechazo la hipótesis nula de varianzas constantes. En este sentido el modelo propuesto es bueno puesto que no existe algun patrón de comportamiento en los valores esperados del peso al nacer. Las varianzas son constantes.

rvpplot plomo yline xlab

gráfica de los residuos comunes contra cada una de las variables independientes.

¿Qué se observa ene sta gráfica?

predict hat, hat Predice los puntos influyentes

Una medida de la distancia de cada punto al centroide de puntos se conoce como "Hat Matriz" y los valores que puede tomar van desde:

$$\frac{1}{n} \le h_{ij} \le \frac{1}{c}$$

. predict sombrero, hat (294 missing values generated)

```
. count if sombrero>2*6/170 & sombrero<. _{9}
```

. list folio peso_rn pb_6 peso_m3 emba cipa_m6 if sombrero>2*6/170 & sombrero<.

	folio	peso_rn	pb_6	peso_m3	emba	сіра_тб
86.	393	3.5	.0834	68.2	б	39
94.	229	2.55	.1335	60	1	29.5
100.	256	3.6	.1153	98	3	42
147.	152	2.35	.4607	52	3	36
151.	237	2.995	1.357228	54	3	33.5
171.	167	3.05	.5232	105	4	47.4
178.	7	2.525	.5539	100	1	45.3
180.	396	2.75	.2042	77	5	35.7
182.	139	2.575	3.0782	48	1	33

El valor mínimo se obtiene si todos los elementos de *x*/son iguales a la media de la variable y si los datos caen en el centroide de la distribución. El valor máximo se presenta en observaciones alejadas del centroide. Si se tiene el valor más alto, de 1, entonces el punto es tan influyente que forza la dirección de la recta hasta pasar por el punto.

count if hat>2*p/n. Se considera que las observaciones que toman valores dos veces por arriba del valor espérado, pueden ser de gran peso para los parámetros estimados.

distancia de cook

predict cook, cooksd

La distancia de Cook nos permite detectar posibles valores aberrantes: la media de cook cuantifica el impacto de la observación o del punto sobre el modelo; cuantifica que tanto cambia el modelo, es decir, los coeficientes de regresión, al excluir cada uno de los puntos.

Se espera que los resultados de la regresión no dependan de una sola observación o de un punto de la regresión.

Distancia de Cook:
$$D_i = \frac{r_i^2}{p'} \left(\frac{h_{ij}}{1-h_{ij}}\right)$$

Donde r_i^2 es el residual estandarizado, h_{ij} la diagonal de la matriz sombrero (hat) y p^2 el número de

parámetros en el modelo.

La distancia de Cook combina una medida de influencia y de falta de ajuste y se distribuye como una F con p+1 y n-p-1 grados de libertad.

```
. predict cook, cooksd
(294 missing values generated)
. sum cook
Variable | Obs Mean Std. Dev. Min Max
cook | 170 .0071119 .0236071 2.40e-07 .2515637
. count if cook>1 & cook<.
0
```

Los puntos que toman valor por arriba de uno ameritan averiguarlos. Si existen puntos arriba de 2 entonces si hay problemas.

> dfbeta puntos influyentes en β

DFBETAS= $\frac{b_k - b_{k(i)}}{S_{e(i)} / \sqrt{RSS_k}}$ Si DFBETAS>0 sobre estima las b´s. O si DFBETAS<0 sub estima las b´s. DBETAS>2/ \sqrt{n}

DBETAS>2/ \sqrt{n}

Cumpliendo con normalidad y corrigiendo por el tamaño de muestra.

Este diagnóstico nos ayuda a evaluar el impacto sobre el vector de β 's . No todas los outliers o valores aberrantes influyen en los datos estimadores.

Nos indica el impacto que ejercería sobre las betas el eliminar las observaciones en cuestión y expresa la magnitud de cambio en unidades de desviación estándar.

. dfbeta

(294 missing values generated) DFedges_rn: DFbeta(edges_rn) (294 missing values generated) DFpb_6: DFbeta(pb_6) (294 missing values generated) DFpeso_m3: DFbeta(peso_m3) (294 missing values generated) DFemba: DFbeta(emba) (294 missing values generated) DFcipa_m6: DFbeta(cipa_m6)

. sum DF	edges_rn	DFpb_6	DFpeso_m3	DFemba	DFcip	pa_m6	
Varia	able	Obs	Mean	Std.	Dev.	Min	Max
DFedges DFr DFpesc DFem DFcipa_	s_rn bb_6 b_m3 nba _m6	170 170 170 170 170	.000399 .0048854 0001463 0003174 0005006	.0734 .0983 .0732 .0999 .0759	4837 3734 2985 9066 9841	3696917 1666424 1845765 4132033 5158963	.2911262 1.208837 .297517 .8465961 .194616

count if abs(df*)>2/sqrt(n)

. for var DFedges_rn- DFcipa_m6: count if abs(X)>2/sqrt(170) & X<.

- -> count if abs(DFedges_rn)>2/sqrt(170) & DFedges_rn<.10
- -> count if abs(DFpb_6)>2/sqrt(170) & DFpb_6<.

3

-> count if abs(DFpeso_m3)>2/sqrt(170) & DFpeso_m3<.

10

-> count if abs(DFemba)>2/sqrt(170) & DFemba<.

9

-> count if abs(DFcipa_m6)>2/sqrt(170) & DFcipa_m6<.

dffits

dffits >2*sqrt(p/n)

DFFITS > 2 *
$$\sqrt{\frac{p}{n}}$$

.precit dfits, dfits

. list folio peso_rn pb_6 peso_m3 emba cipa_m6 if abs(dfit)>2*sqrt(6/170) & dfit<.

	folio	peso_rn	pb_6	peso_m3	emba	сіра_тб
1.	170	3.85	.0637	65	4	34.5

Modolai	~	ostadístico	utilizando		naquioto	Δ Τ Δ Τ 2	۸ño	2005
ivioueiaj	e	estaustico	utilizariuo	eı	paquele	JIAIA.	AIIO	2005

37.	11	3	.0621	63	4	38.5
92.	217	4.475	.1007	54	1	31.4
95.	77	3.8	.1191	80	2	39
158.	363	4.525	.1727	54	5	33
171.	167	3.05	.5232	105	4	47.4
182.	139	2.575	3.0782	48	1	33

Informan de acerca de cómo cambia el valor predicho al excluir la \mathbf{x} observación. Su interpretación es muy similar a la distancia de Cook.

Hay que explorar los puntos antes de exluirlos:

				-					
•	reg	peso_rn	pb_6	edges_rn	peso_m3	emba	cipa_m6	iİ	abs(dfit)<2*sqrt(6/170)

Source	SS S	df	MS		Number of obs $F(5, 157)$	= 163
Model Residual	9.88283419 13.7504885	5 1.9 157 .08	7656684 7582729		Prob > F R-squared	= 0.0000 = 0.4182 = 0.3996
Total	23.6333227	162 .14	5884708		Root MSE	= .29594
peso_rn	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
pb_6 edges_rn peso_m3 emba cipa_m6 _cons	2563846 .1377506 0061606 .0605842 .0558272 -3.927776	.1631968 .0162653 .0039894 .0226563 .0136893 .6883575	-1.57 8.47 -1.54 2.67 4.08 -5.71	0.118 0.000 0.125 0.008 0.000 0.000	5787292 .1056235 0140405 .0158336 .0287883 -5.287412	.0659599 .1698777 .0017193 .1053347 .0828661 -2.56814

¿Qué observamos? Al parecer uno de los puntos influyentes era en pb_6 el valor de 3.07 ya que cambia considerablemente el valor del coeficiente del mismo. Podríamos solo evalura sin ese valor.

≻ vif

multicolinealidad. Vector de Inflación de la varianza.

. vif Variable	VIF	1/VIF
peso_m3 cipa_m6 emba edges_rn	3.17 3.13 1.03 1.03	0.315057 0.319620 0.968075 0.970605
0		

Mean VIF | 1.87

Un valor de 10 en la media del factor de infación de la varianza representa multicolinealidad.

Ejercicio práctico:

Regresión lineal:

Con el fin de controlar algunas enfermedades ocasionadas por vectores como es el caso de la Malaria, en México se utilizan algunos compuestos organoclorados y organofosforados para controlar al vector. Como resultado de actividades intensivas de este tipo se ha logrado reducir la el numero de casos de malaria a nivel nacional. El DDT (Dicloro Difenil Tricloroetano) se usó en épocas pasadas y se sigue usando en menor cantidad como spray dentro de las casas en áreas endémicas. El DDT puede metabolizarse en el organismo a p'p-DDE y p'p-DDT, sobre los cuales en algunos estudios se ha reportado que pueden tener efectos estrogénicos y androgénicos en los humanos. Con el propósito de describir las concentraciones de DDT en hombres residentes de un área endémica de paludismo no expuestos ocupacionalmente a DDT, se realizó un estudio transversal en Chiapas México en donde se evaluaron diferentes metabolitos del DDT en plasma y se midieron algunos factores potenciales asociados al incremento de dichos Biomarcadores.

Referencia: Non-Occupational Determinants of Plasma DDT and P, P'-DDE in men from Chiapas, Mexico

En base al artículo de referencia y a la base que se le proporciona (ddt.dta), realice el siguiente ejercicio:

1. Antes de iniciar con el análisis estadístico:

a) Explore las variables para detectar valores Outliers, si encuentra valores outliers deberá decidir si hay que eliminar o reemplazar los datos por valo res perdidos.

b)Mediante un gráfico de barras evalúe la distribución de las variables: stature weight opdde ppdde opddt ppddt_li

c)mediante grafico evalue las frecuencias de las siguientes variables: age adress time_res_born_pla_pest_inf actual_o frecupe_ddt smoke

2. Realice las estadisticas de resumen que considere necesarias y suficientes para describir las varaibles antes descritas.

3. Evalue la correlación entre las variables los principales metabolitos de ddt.

4.- Proponga un modelo que explique los niveles de DDT en sangre.

a) Evalúe si el modelo cumple los supuestos de

Normalidad

Linealidad

Homocedasticidad

b) Mediante técnicas diagnósticas determine si es un buen modelo.

5. Interprete los coeficientes de regresión, R² del modelo.

6.- ¿Considera que el modelo al que llegó puede cambiar en base a algunas varaibles no medidas?

Stata/SE 8.0		
File Edit Prefs Data Graphics	Statistics User Window Help	
	Summaries, tables, & tests	•
	Linear regression and related	Linear regression
🗖 Review 🛛 🗙 🗖 Sta	Binary outcomes	Regression diagnostics Added-variable plot
regress pb_st22 hijos_bp ∧ - rer cler clear use "C:\Documents and clear use "C:\Documents and use "C:\Documents and ren pbplas23 pb_8	Ordinal outcomes Count outcomes Categorical outcomes Selection models Generalized linear models (GLM)	Box-Cox regression Component-plus-residual plot Box-Cox regression Augmented component-plus-residual plot Errors-in-variables regression Leverage-versus-squared residual plot Frontier models Residual-versus-fitted plot Truncated regression Residual-versus-predictor plot
ren pbplas22 pb_6 ren pbplas21 pb_3 edit save "C:\Documents and regress peso_rn pb_3	Time series Multivariate time series Cross-sectional time series	Multiple equation models Censored regression Fractional polynomials Other Multiple equation models Score test for heteroskedasticity DFBETAs Variance inflation factors
Variables	Survival analysis Observational/Epi. analysis	179 .16924326 Information matrix test 180 .171352383 Root MSE = .41139
cipa m3	Survey data analysis	
presis3 predia3 pb_st3 pb_3	ANOVA/MANOVA Cluster analysis Other multivariate analysis	td. Err. t P>iti [95% Conf. Interval] 1597375 -1.80 0.0736028793 .0275426 .04503 70.74 0.000 3.096776 3.274492
fe_ppb3	Resampling & simulation	• E
hb_ppb3 fuma6	General post-estimation	•
presis6	Other	•
predia6 Stat pb_st6 pb_6 fe_ppb6 hb_ppb6 S	a Command	
🐉 Inicio 🛛 🔯 Bandeja d.	🔟 stataCV 🔛 Int	ercoole 📄 stata8 🔣 Stata/SE 8.0 ES 🦿 🔿 🔏 05:36 p.m.

Diagnóstico utilizando Stata 8.

A través del menú seleccionamos nuevamente [statistics] dentro del submenu para [Linear regression] seleccionamos [Regressions diagnostics]. Podemos ver una lista de opciones de diagnósico desde gráficos para análisis de residuos hasta opciones para evaluación de puntos influyentes.

Modelos con Regresión logística

Stata también ofrece muchas técnicas para modelar variables dependientes categóricas, variables ordinales y variables censuradas.

En la regresión logística se estima la regresión de una variable dependiente contra las variables independientes, donde la variable dependiente es dicotómica, es decir puede tomar valores de 0 y 1, ya que sigue una probabilidad Bernouli. La regresión logística utilizando en Stata el comando **logistic** se estima Razones de Momios y para ver los coeficientes habría que utilizar la función **logit**.

Un modelo logit o logísitco se estructura de la siguiente manera:

 $ln(p/(1-p) = \beta_0 + \beta_1 X \quad En \ el \ caso \ de \ un \ modelo \ simple$ $logit \ p = ln(p/(1-p) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots, \beta_p X_p = \underline{Xi\beta}$

De este modo:

$$\frac{p}{1-p} = \exp^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_p X_p}$$

$$P = \frac{1}{1 + \exp^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_p X_p)}}$$

En el modelo logísitico y es la variable dicotómica que puede tomar valores de 0 o 1, donde 1 es caso y 0 no caso, 0 tiene una probabilidad p de ocurrir y 0 una probabilidad de 1-p.

La función de riesgo puede tomar valores desde -∞a +∞

Donde xi representa el vector de las variables independientes o factores de riesgo, Ej: xI= tabaco, x2= alcohol, x3= hipertensión, ... y β representa el vector de parámetros.

En cuanto a los comantdos (sintaxis) a continuación se presenta un lista parcial de comandos relevantes para utilizarse en regresión logística:

logistic y x1 x2 x3	Estima una regresión logística de {0, 1} variable y sobre los predictores
	x1, x2 y x3.
Lrtest, s(0)→ Irtest	Compara el modelo saturado contra el modelo propuesto a través de
est store A→ Irtest A	las máximas verosimilitudes de ambos modelos.
Lfit,	Presenta una prueba de chi2 de Pearson de máxima verosimilitud del
	modelo logistico estimado.
Istat	Presenta varias estadísticas de resumen incluyendo una tabla de
	clasificación.

Istat,Iroc y Isens	Se utilizan para evaluar el modelo. El punto de análisis es la
	clasificación
Iroc	Grafica la curva receiver operating characteristic (ROC) Calcula el
	área bajo la curva.
Isens	Grafica ambos la sensibilidad y especificidad vs el punto de corte de
	probabilidades.
Ipredict phat	Genera una nueva variable (arbitrariamente nombrada pht) igual a las
	probabilidades predichas de que y=1 basada sobre el modelo
	logistico mas reciente.
Ipredict dX2, dx2	Genera una nueva variable nombrada dX2(arbitrariamente), la
	medidia diagnóstica "oportunidad en chi-cuadrada de Pearson," del
	análisis logístico mas reciente.
mlogit y x1 x2 x3, base (3) rrr	Estima una regresión logística multinomial de variables <i>y</i> de múltiples
nolog	categorías sobre las variables x . Usa y=3 como la categoría basal de
	comparación; dando riesgos relativos provenientes de los
	coeficicientes de regresión.
predict P2, outcome (2)	Genera una nueva variable (arbitrariamente nombrada P2) la cual
	representa la probabilidad de que y sea igual a 2, basada sobre el
	análisis mlogit mas reciente.
glm success x1 x2 x3, family	Estima una regresión logística a partir de un modelo lineal
(binomiai) eform	generalizado. Eform se agrega para obtener resultados en forma de
	OR.

lpredict newvar	Predice la probabilidad de que $y = 1$.
lpredict newvar, dbeta	ΔB estadístico de puntos influyentes en B, análogo a Cook´s D.
lpredict newvar, deviance	Residuos de Devianza para jth patrón <i>de x</i> , dj.
lpredict newvar, dx2	Cambio en X ² Pearson, escrito como $\Delta X^2 \circ \Delta X^2 P$.
lpredict newvar, ddeviance	Cambio en la devianza X^2 , escrito como ΔD o $\Delta X^2 D$.
lpredict newvar, hat	Influencia de la jth patróbn de x , hj
lpredict newvar, number	Asigna número al patrón de x, j = 1,2,3j
lpredict newvar, resid	Residuos de Pearson para jth patrón x, rj.
Ipredict newvar, rstandard	Residuos estandarizados de Pearson.

Nota los estadísticos obtenidos de the **dbeta**, **dx2**, **ddeviance y hat** no miden la influencia de observaciones individuales como su contraparte en la regresión ordinal. Esto es, logit mide la influencia estadística "patrones de covarianza", es decir la consecuencia de borrar todas las observaciones con estas combinaciones particulares de valores de *x*.

Sesion en Stata

Construcción de un Modelo de Regresión Logística:

En un estudio realizado en la ciudad de México se analizó la relación entre las concentraciones de metabolitos del DDT y el riesgo de cáncer de mama. El análisis siguiente parte de los datos obtenidos en dicho estudio:

. logistic caco menarca postmen edad ddelip if ddelip<14

Logit estimate		Numbe: LR ch Prob Pseud	r of obs i2(4) > chi2 o R2	= = =	242 26.66 0.0000 0.0795		
caco	Odds Ratio	Std. Err.	z	P> z	[95% Cor	nf. I	[nterval]
ddelip menarca postmen edad	1.200524 .7108641 .2940498 1.05168	.107166 .0730371 .1403307 .0192144	2.05 -3.32 -2.56 2.76	0.041 0.001 0.010 0.006	1.007831 .5812066 .115398 1.014686	5 5 5 5	1.43006 .8694459 .7492789 1.090021

Si la regresión la hacemos en Stata 8 y deseamos hacerla a través de los menús:

💊 Stata/SE 8.0			
File Edit Prefs Data Grap	hics Statistics User Window Help		
🗃 🖬 🎒 😚 🚳	Summaries, tables, & tests	▶	
	Linear regression and related	•	
🗖 Review 🛛 📉	Sta Binary outcomes	Logistic regression	
save "C:\Documents and 🔨 📕	ter: Ordinal outcomes	 Logistic regression (reporting odds ratios) 	
regress peso_rn pb_3 rvpplot pb_3 dfbeta vif clear use "C:\Documents and	Count outcomes Categorical outcomes Catego	Probit regression Probit regression (reporting change in prob.) Bivariate probit regression Seemingly unrelated bivariate probit regression	
clear use "C:\Documents and E Log *logistic caco menarca po logit caco menarca postr	og 1 Time series Multivariate time series	GLM for the binomial family Complementary log-log regression	s
scobit caco ddelip 🔽	Cross-sectional time series	Heteroskedastic probit regression	Co
🗖 Variables 🛛 🗙	Survival analysis Observational/Epi, analysis	Skewed logit regression Grouped data	54
Target: Command Window	Survey data analysis	Post-estimation 8	27
menarca regla1 edadp hijos inse	ANOVA/MANOVA i ke] Cluster analysis Other multivariate analysis Dte : Recompling & cignulation	0155772 .0376 a=1: chi2(1) = 0.66 are recommended for inference with	93 >
antcan			
gestas	General post-estimation	•	
postmen	Other	•	
quet lacto	Stata Command		

Habrá que seleccionar el submenú para análisis de datos binarios [binary outcomes] ahí encontraremos la opción entre otros para análisis de regresión logística [Logistic regression].

Una vez que entramos en la ventana del submenu, introducimos la variable dependiente e independientes.

🔜 Stata/SE 8.0	
<u>File Edit</u> Prefs <u>D</u> ata <u>G</u> raphics <u>S</u> tatistics <u>U</u> ser <u>Wi</u> ndow <u>H</u> elp	
Review 🛛 🗖 logit - Maximum-likelihood logistic estimation	
save "C:\Documents and Amin by/if/in Weights Robust SE Max options Amin by/if/in Weights Robust SE Max options Amin by/if/in Weights Robust SE Max options Amin By/if/in By/if/in Weights Robust SE Max options Amin By/if/in By/if/if/in By/if/in By/if/in By/if/in By/if/if/in By/if/if/in By/if/if/in By/if/if/if/if/if/if/if/if/if/if/if/if/if/	
dfbeta Dependent variable: Independent variables: vif clear caco menarca postmen edad ddelip	
use "C:\Documents and clear use "C:\Documents and "logistic caco menarca pc logit caco menarca postrr	
scobit caco ddelip Image: Constant term I	t
Target: Command Window edad menarca regla1 edadp hijos inse antcan estas	1
pestas parity postmen nuet	

Si queremos condicionar por el valor que proponíamos anterioremente, es decir hacer la regresión sólo para cuando la variable ddelip sea menor de 14 entonces en el submenú [by/if/in]:

🔣 Stata/SE 8.0	
File Edit Prefs Data G	raphics Statistics User Window Help
🗖 Review 🛛 🗙	logit - Maximum-likelihood logistic estimation
save "C:\Documents and regress peso_m pb_3 rvpplot pb_3 dfbeta vif clear use "C:\Documents and clear use "C:\Documents and "logistic caco menarca pt logit caco menarca postr scobit caco ddelip	Main by/if/in Weights Robust SE Max options Repeat command for groups defined by:
Target: Command Window edad menarca regla1 edadp hijos inse antcan gestas	· 1 4 chi2 cobi
parity	2 R DK Cancel Submit

El diagnóstico del modelo también se puede realizar en stata 8 a través de ventanas (iconos):

👪 Stata/SE 8.0							
File Edit Prefs Data	Graphics	Statistics User Window Help					
🖻 日 🍯 🔗	۱	Summaries, tables, & tests	•				
		Linear regression and related	•		_		
Review 🔀	📃 Sta	Binary outcomes	₽	Logistic regression			
save "C:\Documents and A	Itera	Ordinal outcomes Count outcomes Categorical outcomes		Logistic regression (reporting odds ratios)			
rvpplot pb_3	Itera			Probit regression			
dfbeta It vif It		Selection models	•	Probit regression (reporting change in prob.)			
clear	Skewe Log 1	Generalized linear models (GLM)		Seemingly unrelated bivariate probit regression			
use "C:\Documents and clear use "C:\Documents and logistic caco menarca postr logit caco menarca postr		Nonparametric analysis	•				
		Time series	►	GLM for the binomial family Complementary log-log regression	es =		
		Multivariate time series	-	Complementary log-log regression			
scobit caco ddelip 🗸 🗸		Cross-sectional time series		Heteroskedastic probit regression	Conf. I		
🗌 Variables 🛛 🗙		Survival analysis	►	Skewed logic regression	6549		
Larget: Command Windov		Observational/Epi, analysis		Grouped data	• •		
edad	Goodnes	s-of-hit after logistic/logit/probit 		Post-estimation	8271 -		
menarca	ROC curve after logistic/logit/probit			0155772 .	0376934		
regla] edado	Sensitivi	ty/specificity plot		a=1: chi2(1) = 0.66 P	reah > chi2		
hijos		Other multivariate analysis					
inse antoan	Resampling & simulation			are recommended for inference	with scobit		

Intest Intest, s(0)

Guarda información a cerca del modelo realizado mas recientemente y estima una prueba de razón de verosimilitudes entre pares de máxima verosimilitud de modelos estimados. La opción saving especifica a Stata que guarde con un nombre el resumen de las estadísticas asociadas con el modelo estimado mas recientemente. Generalmente el modelo mas grande se guarda como lrtest, saving(0). Lrtest, using(0) se emplea entonces en el siguiente modelo con el cual queremos comparar las estadísticas guardadas del modelo anterior. Si no especificamos using(0), Stata por default utiliza el modelo grabado como 0.

Suponiendo que L_0 y L_1 son los valores de log-verosimilitud asociados con el modelo saturado y el modelo propuesto respectivamente. Entonces :

$$X^2 = -2(Lo y L_1)$$

con L_0 y L_1 grados de freedmon, donde d_0 y d_1 son los grados de libertad de freedmon del modelo asociados con el modelo saturado y el modelo propuesto.

La prueba de hipótesis para este estadístico es que las log-verosimilitudes del modelo saturaco y el modelo propuesto son iguales.

. logistic caco menarca postmen edad quet ddelip if ddelip<14

Logit estimate	es 1 = -152.49782	2			Nu LR Pr Ps	mber of c chi2(5) cob > chi2 eudo R2	obs = = = = =	242 30.22 0.0000 0.0902
caco	Odds Ratio	Std.	 Err.	z	P> z	: [95	% Conf.	Interval]
ddelip menarca postmen edad quet	1.210784 .7163815 .264507 1.052668 1.059535	.1089 .0743 .1274 .0192 .0328	659 977 727 988 435	2.13 -3.21 -2.76 2.80 1.87	0.03 0.00 0.00 0.00 0.00	4 1. 1 .58 6 .1 5 1.0 2 .99	01499 44472 02854 15515 970796	1.444347 .8780988 .6802255 1.091181 1.125903
. lrtest,using Logistic: lik	g(0) celihood-ratio	test				chi2(-1 Prob >	.) = chi2 =	-3.57
. vce	menarca po	ostmen	eda	ad	quet	ddelip	_cons	
menarca postmen edad quet	.010785 .004745 .2 000292(.000059(232252 06687 02098	.00033	36 29 .00	0961			

104

ddelip | -.00003 -.006953 -.000317 .000187 .008099 _cons | -.023116 .276953 -.012356 -.02759 -.007718 1.34723 . logistic caco menarca postmen edad quet ddelip if ddelip<14 Logit estimates Number of obs = 242 30.22 LR chi2(5) = 30.22 Prob > chi2 = 0.0000 Pseudo R2 = 0.0902 Log likelihood = -152.49782Pseudo R2 0.0902 _____ _____ _ _ _ caco | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] ______+ menarca.7163815.0743977-3.210.001.5844472.8780988postmen.264507.1274727-2.760.006.102854.6802255edad1.052668.01929882.800.0051.0155151.091181quet1.059535.03284351.870.062.99707961.125903ddelip1.210784.10896592.130.0341.014991.444347 _____ _____ . lrtest,s(0) . logistic caco menarca postmen edad ddelip if ddelip<14 Number of obs = Logit estimates 242 = 26.66 LR chi2(4) = 26.66 Prob > chi2 = 0.0000 0.0795 Log likelihood = -154.28118Pseudo R2 = _____ caco | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] menarca.7108641.0730371-3.320.001.5812066.8694459postmen.2940498.1403307-2.560.010.115398.7492789edad1.05168.01921442.760.0061.0146861.090021ddelip1.200524.1071662.050.0411.0078311.43006 _____ ·_____ -----. lrtest, using(0) chi2(1) Logistic: likelihood-ratio test 3.57 = Prob > chi2 = 0.0589

. **no rechazamos la hipótesis nula*

> vce

vce calcula la matriz de varianza -covarianza de los estimadores (VCE) después de la estimación del modelo VCE puede ser utilizado después de cualquier comando de estimación.

. vce

	menarca	postmen	edad	ddelip	_cons
menarca postmen edad ddelip _cons	.010556 .004561 000286 000089 020776	.227753 006659 006585 .219783	.000334 000303 011526	.007968 002832	.553021

Este estadístico nos muestra el patrón de varianza covarianza

Diagnóstico del modelo de regresión logística:

Evaluación global del ajuste del modelo.

Después de realizar el modelo y de estar relativamente conformes con él, entonces vamos a evaluar la calidad del mismo.

Estrategia: Evaluación global del modelo. Revisión de gráficas diagnósticas. Revisión de residuos

En regresión logística, la validez de la X^2 de Pearson depende del número de "patrones de las covariables".

Si J: Número de valores distintos observados del vector \underline{x} y p: número de parámetros en el modelo, entonces

X² de Pearson~X²(J-p)

Pero si J≈n, lo que sucede frecuentemente cuando se tienen covariables continuas, entonces los *p-values* obtenidos son poco confiables, por lo que se propone una alternativa:

Prueba de Hosmer y Lemeshow:

Generar grupos basados en las probabilidades estimadas por el modelo, concretamente en sus percentiles.

Proponen una estadística equivalente a la X² de Pearson pero que se distribuye como

X²(g-2)

donde g es el número de grupos generados. Comúnmente g=10.

Ejemplo de comandos:

≻ lfit

. Ifit

```
Logistic model for caco, goodness-of-fit test

number of observations = 242

number of covariate patterns = 242

Pearson chi2(237) = 239.64

Prob > chi2 = 0.4398
```

Prueba de Hosmer y Lemeshow x² (g-2). Presenta una prueba de chi² de Pearson de máxima verosimilitud del modelo logístico estimado: frecuencias observadas vs esperadas de y=1, usando celdas definidas por el comportamiento de la(s) covariable(s) (variables x). Cuando el patrón de x es grande, se pueden agrupar entonces de acuerdo a probabilides estimadas. Ifit, group(10) puede estimar la prueba con 10, aproximadamente igual al tamaño del grupo.

. lfit,group(10)
Logistic model for caco, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)
number of observations = 242
number of groups = 10
Hosmer-Lemeshow chi2(8) = 6.96
Prob > chi2 = 0.5408

También se propone, como técnica diagnóstica, construir la tabla de clasificación de la variable dependiente vs un predictor dicotómico las cuales se utilizan cuando el estudio sobre el cual estimamos la ecuación logit es un estudio de seguimiento o longitudinal y en los cuales podemos estimar B₀. Algunas de estas pruebas son.

Istat

Presenta varias estadísticas de resumen incluyendo una tabla de clasificación, sensibilidad y especificadad para el modelo estimado por logistic, logit o probit.

. lstat

Logistic model for caco

	True					
Classified	D	~D	Total			
+ -	71 46	42 83	113 129			
Total	117	125	242			
Classified + if predicted Pr(D) >= .5 True D defined as caco ~= 0						
Sensitivity Specificity Positive pre Negative pre	edictive value edictive value	Pr(+ Pr(- Pr(D Pr(D Pr(~D	D) 60.68% ~D) 66.40% +) 62.83% -) 64.34%			
False + rate False - rate False + rate False - rate	e for true ~D e for true D e for classified + e for classified -	Pr(+ ^ Pr(- Pr(~D Pr(D	-D) 33.60% D) 39.32% +) 37.17% -) 35.66%			
Correctly classified 63.64%						

Cambiando el punto de corte: . lstat, cutoff(0.7)

Los símbolos en la tabla de clasificación tienen las siguientes mediciones:

D ocurrencia del evento de interés (esto es Y=1). En este ejemplo, D indica que ocurre: la enfermedad (caso de cáncer de mama)

~D No ocurrencia del evento (es decir y=0). En este ejemplo, ~ D corresponde a la ausencia de la enfermedad x (en los controles)

+ La probabilidad predicha por el modelo logístico es mayor o igual al punto de corte. Debido a que nosotros utilizamos por default el 0.5 + esto indica que el modelo predice una probabilidad de 0.5 o mas extrema tener la enfermedad x.

- La probabilidad predicha es menor que la del punto de corte. Aquí, el – indica que el modelo predice una probabilidad media menor de 0.5 de tener la enfermedad x (la probabilidad es baja).

Por default lstat emplea una probabilidad de 0.5 como punto de corte (sin embargo se puede cambiar esta al adicionar la opción cutoff().

Iroc

curva ROC

Grafica la curva receiver operating characteristic (ROC). Calcula el área bajo la curva. Esta es una gráfica de la sensibilidad contra (1-especificidad), es decir, grafica el número de casos positivos correctamente clasificados (predichos por el modelo) contra el número de no casos que fueron clasificados incorrectamente como casos, así como la clasificación del entrecruzamiento c. Esta herramienta gráfica es muy útil cuando el objetivo del análisis fue la clasificación.

El área bajo la curva se usa como medida del valor predictivo.

Ejemplo de comandos:

. Iroc

Logistic model for caco

number of observations = 242 area under ROC curve = 0.6784

El área bajo la curva es el área sobre lo mas bajo de esta gráfica, y es determinada por integración de la curva . Los vértices de la curva son determinados por ordenación de los datos de acuerdo al índice predicho y la integral es calculada utilizando la regla trapezoide.

Un modelo sin poder predictivo tendría una curva con inclinación de 45° y el área bajo la curva sería 0.5. El modelo con mayor poder de predicción formaría un arco y el área bajo la curva sería 1.
> Isens

Lsens también grafica sensibilidad y especifidad.

. Isens

La gráfica muestra en el eje *y* la sensibilidad y la especificidad contra la probabilidad de entrecruzamiento c en el eje x.. Esta equivale a los datos de lstat si cambiáramos los datos del punto de corte del 0 al 1.

Para nuestro modelo la sensibilidad y la especificidad son demasiado bajos, esto querría decir que mi modelo no esta estimando correctamente los casos, sin embargo el diagnóstico con estas pruebas, son preferentemente útiles en el caso de estudios de clasificación como es en el caso de estudios de tamizaje.

Es importante mencionar que en cuanto a diseño:

Aunque el modelo logístico puede aplicarse a un estudio de casos y controles y uno transversal, es importante reconocer algunas **limitaciones**:

- En un **estudio de seguimiento**, el modelo logístico puede usarse para predecir el **riesgo de un individuo** de padecer la enfermedad, dados valores específicos de las variables independientes.

- En un estudio de seguimiento, el parámetro de regresión 0 puede estimarse de manera válida porque se conoce la fracción de muestro.

- La estimación adecuada de Bo permite estimar el riesgo individual de contraer la enfermedad.

- En un estudio de casos y controles o un estudio transversal, sólo se pueden obtener estimaciones del cociente de momios.

- En un estudio de casos y controles o un estudio transversal, el parámetro B_0 no puede estimarse de manera válida sin que se conozca la fracción de muestreo.

- Sin la estimación adecuada de Bono podemos obtener un buen estimador del riesgo.

Cuando las variables por las que se ajusta se consideran fijas pero no se especifican en su totalidad:

- Se puede usar la regresión logística para obtener directamente un estimador del OR pero no podemos estimar el riesgo relativo.

_ Se puede estimar el RR indirectamente ya que el OR iguala al RR si la enfermedad es rara:

Ejercicio práctico. Regresión logística

- 1) Haga un análisis exploratorio y bivariado de la información que se le presenta.
- 2) Mediante regresión logística estime el mejor modelo que prediga el OR de enfermar entre los expuestos a Asma. Compare sus resultados con los del artículo de referencia al respecto. Obtenga intervalos de confianza del 95 % para la Razón de Odds.
- 3) Justifique, si es el caso, la inclusión en el modelo de las variables de control.
- 1) Aplique los comandos necesarios para realizar el diagnóstico del modelo propuesto.

Anexos:

Artículos de referencia que usará para los Ejercicios y talleres.

Secciones de del Manual de STATA 8.0

Bases a utilizar:

- Factores predictores de los niveles de DDT en sangre en pobplación masculina en Chiapas.
 Factores de riesgo para Asma en niños escolares de la cd de México.